Open Access
Numéro
Med Sci (Paris)
Volume 39, Numéro 11, Novembre 2023
Page(s) 815 - 819
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2023150
Publié en ligne 29 novembre 2023
  1. Tian L, Andrew Hires S, Looger LL. Imaging neuronal activity with genetically encoded calcium indicators. Cold Spring Harb Protoc 2012; 7 : 647–56. [Google Scholar]
  2. Emiliani V, Entcheva E, Hedrich R, et al. Optogenetics for light control of biological systems. Nat Rev Methods Primers 2022; 2 : 55. [CrossRef] [PubMed] [Google Scholar]
  3. Deisseroth K.. Optogenetics. Nat Methods 2011 ; 8 : 26–29. [CrossRef] [PubMed] [Google Scholar]
  4. Gabor D. Holography, 1948–1971. Science 1972 ; 177 : 299–313. [CrossRef] [PubMed] [Google Scholar]
  5. Chen IW, Papagiakoumou E, Emiliani V. Towards circuit optogenetics. Curr Opin Neurobiol 2018 ; 50 : 179–189. [CrossRef] [PubMed] [Google Scholar]
  6. Packer AM, Russell LE, Dalgleish HWP, et al. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat Methods 2015 ; 12 : 140–146. [CrossRef] [PubMed] [Google Scholar]
  7. Ronzitti E, Ventalon C, Canepari M, et al. Recent advances in patterned photostimulation for optogenetics. J Opt (UK) 2017 ; 19 : 113001. [CrossRef] [Google Scholar]
  8. Papagiakoumou E, Ronzitti E, Emiliani V. Scanless two-photon excitation with temporal focusing. Nat Methods 2020; 17 : 571–81. [CrossRef] [PubMed] [Google Scholar]
  9. Marshel JH, Kim YS, Machado TA, et al. Cortical layer-specific critical dynamics triggering perception. Science (80) 2019; 365 : 1–23. [Google Scholar]
  10. Chen K, Tian Z, Kong L. Advances of optical miniscopes for in vivo imaging of neural activity in freely moving animals. Front Neurosci 2022; 16 : 1–9. [Google Scholar]
  11. Aharoni D, Hoogland TM. Circuit investigations with open-source miniaturized microscopes: Past, present and future. Front Cell Neurosci 2019 ; 13 : 1–12. [CrossRef] [PubMed] [Google Scholar]
  12. Zong W, Wu R, Chen S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging. Nat Methods 2021; 18 : 46–9. [CrossRef] [PubMed] [Google Scholar]
  13. Szabo V, Ventalon C, De Sars V, et al. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Urology 2014 ; 84 : 1157–1169. [CrossRef] [PubMed] [Google Scholar]
  14. Accanto N, Blot FGC, Lorca-Cámara A, et al. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice. Neuron 2023; 111 : 176–89.e6. [CrossRef] [PubMed] [Google Scholar]
  15. Antonini A, Sattin A, Moroni M, et al. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness in awake mice. eLife 2020; 9 : e58882. [CrossRef] [PubMed] [Google Scholar]
  16. Ozbay BN, Futia GL, Ma M, et al. Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axial-scanning. Sci Rep 2018 ; 8 : 1–14. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.