Free Access
Issue
Med Sci (Paris)
Volume 39, Novembre 2023
Les Cahiers de Myologie
Page(s) 47 - 53
Section Mises au point
DOI https://doi.org/10.1051/medsci/2023143
Published online 17 November 2023
  1. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 2004 ; 7 : 405–410. [CrossRef] [PubMed] [Google Scholar]
  2. Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a quantitative Review. Front Physiol 2012 ; 3 : 260. [CrossRef] [PubMed] [Google Scholar]
  3. Cao L, Morley JE. Sarcopenia Is Recognized as an Independent Condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. J Am Med Dir Assoc 2016 ; 17 : 675–677. [CrossRef] [PubMed] [Google Scholar]
  4. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2, Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019 ; 48 : 16–31. [CrossRef] [PubMed] [Google Scholar]
  5. Gonthier R. Epidemiology, morbidity, mortality, cost to society and the individual, and main causes for falls. Bull Acad Natl Med 2014 ; 198 : 1025–1039. [PubMed] [Google Scholar]
  6. Ethgen O, Beaudart C, Buckinx F, et al. The Future Prevalence of Sarcopenia in Europe: A Claim for Public Health Action. Calcif Tissue Int 2017 ; 100 : 229–234. [CrossRef] [PubMed] [Google Scholar]
  7. Dent E, Morley JE, Cruz-Jentoft AJ, et al. International Clinical Practice Guidelines for Sarcopenia [ICFSR): Screening, Diagnosis and Management. J Nutr Health Aging 2018 ; 22 : 1148–1161. [CrossRef] [PubMed] [Google Scholar]
  8. Cannataro R, Carbone L, Petro JL, et al. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22 : 9724. [CrossRef] [PubMed] [Google Scholar]
  9. Boirie Y. Physiopathological mechanism of sarcopenia. J Nutr Health Aging 2009 ; 13 : 717–723. [CrossRef] [PubMed] [Google Scholar]
  10. Dalle S, Rossmeislova L, Koppo K. The Role of Inflammation in Age-Related Sarcopenia. Front Physiol 2017 ; 8 : 1045. [CrossRef] [PubMed] [Google Scholar]
  11. Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia. Int J Mol Sci 2010 ; 11 : 1509–1526. [CrossRef] [PubMed] [Google Scholar]
  12. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. European Working Group on Sarcopenia in Older People, Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010 ; 39 : 412–423. [CrossRef] [PubMed] [Google Scholar]
  13. Bao Z, Cui C, Chow SKH, et al. AChRs Degeneration at NMJ in Aging-Associated Sarcopenia-A Systematic Review. Front Aging Neurosci 2020; 12 : 597811. [CrossRef] [PubMed] [Google Scholar]
  14. Ham DJ, Rüegg MA. Causes and consequences of age-related changes at the neuromuscular junction. Curr Opin Physiol 2018 ; 4 : 32–39. [CrossRef] [Google Scholar]
  15. Soendenbroe C, Heisterberg MF, Schjerling P, et al. Molecular indicators of denervation in aging human skeletal muscle. Muscle Nerve 2019 ; 60 : 453–463. [CrossRef] [PubMed] [Google Scholar]
  16. Piasecki M, Ireland A, Piasecki J, et al. Failure to expand the motor unit size to compensate for declining motor unit numbers distinguishes sarcopenic from non-sarcopenic older men. J Physiol 2018 ; 596 : 1627–1637. [CrossRef] [PubMed] [Google Scholar]
  17. Gouspillou G, Picard M, Godin R, et al. Role of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in denervation-induced atrophy in aged muscle: facts and hypotheses. Longev Healthspan 2013 ; 2 : 13. [CrossRef] [PubMed] [Google Scholar]
  18. Chai RJ, Vukovic J, Dunlop S, et al. Striking denervation of neuromuscular junctions without lumbar motoneuron loss in geriatric mouse muscle. PLoS One 2011 ; 6 : e28090. [CrossRef] [PubMed] [Google Scholar]
  19. Taetzsch T, Valdez G. NMJ maintenance and repair in aging. Curr Opin Physiol 2018 ; 4 : 57–64. [CrossRef] [PubMed] [Google Scholar]
  20. Gonzalez-Freire M, De Cabo R, Studenski SA, et al. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front Aging Neurosci 2014 ; 6 : 208. [CrossRef] [PubMed] [Google Scholar]
  21. Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2016 ; 594 : 1965–1978. [CrossRef] [PubMed] [Google Scholar]
  22. Hettwer S, Dahinden P, Kucsera S, et al. Elevated levels of a C-terminal agrin fragment identifies a new subset of sarcopenia patients. Exp Gerontol 2013 ; 48 : 69–75. [CrossRef] [PubMed] [Google Scholar]
  23. Kang H, Tian L, Mikesh M, et al. Terminal Schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 2014 ; 34 : 6323–6333. [CrossRef] [PubMed] [Google Scholar]
  24. Barik A, Li L, Sathyamurthy A, et al. Schwann Cells in Neuromuscular Junction Formation and Maintenance. J Neurosci 2016 ; 36 : 9770–9781. [CrossRef] [PubMed] [Google Scholar]
  25. Aare S, Spendiff S, Vuda M, et al. Failed reinnervation in aging skeletal muscle. Skelet Muscle 2016 ; 6 : 29. [CrossRef] [PubMed] [Google Scholar]
  26. Snyder-Warwick AK, Satoh A, Santosa KB, et al. Hypothalamic Sirt1 protects terminal Schwann cells and neuromuscular junctions from age-related morphological changes. Aging Cell 2018 ; 17 : e12776. [CrossRef] [PubMed] [Google Scholar]
  27. Dumont NA, Bentzinger CF, Sincennes MC, et al. Satellite Cells and Skeletal Muscle Regeneration. Compr Physiol 2015 ; 5 : 1027–1059. [CrossRef] [PubMed] [Google Scholar]
  28. Muñoz-Cánoves P, Neves J, Sousa-Victor P. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. FEBS J 2020; 287 : 406–16. [CrossRef] [PubMed] [Google Scholar]
  29. Moiseeva V, Cisneros A, Sica V, et al. Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration. Nature 2023; 613 : 169–78. [CrossRef] [PubMed] [Google Scholar]
  30. Conboy IM, Conboy MJ, Wagers AJ, et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005 ; 433 : 760–764. [CrossRef] [PubMed] [Google Scholar]
  31. Kadi F, Charifi N, Denis C, et al. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004 ; 29 : 120–127. [CrossRef] [PubMed] [Google Scholar]
  32. Verdijk LB, Koopman R, Schaart G, et al. Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 2007 ; 292 : E151–E157. [CrossRef] [PubMed] [Google Scholar]
  33. Keefe AC, Lawson JA, Flygare SD, et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat Commun 2015; 6, : 7087. [CrossRef] [PubMed] [Google Scholar]
  34. Brack AS, Bildsoe H, Hughes SM. Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 2005 ; 118 : 4813–4821. [CrossRef] [PubMed] [Google Scholar]
  35. Chakkalakal JV, Jones KM, Basson MA, et al. The aged niche disrupts muscle stem cell quiescence. Nature 2012 ; 490 : 355–360. [CrossRef] [PubMed] [Google Scholar]
  36. Liu W, Klose A, Forman S, et al. Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. Elife 2017 ; 6 : e26464. [CrossRef] [PubMed] [Google Scholar]
  37. Fry CS, Lee JD, Mula J, et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 2015 ; 21 : 76–80. [CrossRef] [PubMed] [Google Scholar]
  38. Bilodeau PA, Coyne ES, Wing SS. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016 ; 311 : C392–C403. [CrossRef] [PubMed] [Google Scholar]
  39. Gumucio JP, Mendias CL. Atrogin-1, MuRF-1, and sarcopenia. Endocrine 2013 ; 43 : 12–21. [CrossRef] [PubMed] [Google Scholar]
  40. Altun M, Besche HC, Overkleeft HS, et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J Biol Chem 2010 ; 285 : 39597–39608. [CrossRef] [PubMed] [Google Scholar]
  41. Antuña E, Cachán-Vega C, Bermejo-Millo JC, et al. Inflammaging: Implications in Sarcopenia. Int J Mol Sci 2022; 23 : 15039. [CrossRef] [PubMed] [Google Scholar]
  42. Bian AL, Hu HY, Rong YD, et al. A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res 2017 ; 22 : 25. [CrossRef] [PubMed] [Google Scholar]
  43. Cuthbertson D, Smith K, Babraj J, et al. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 2005 ; 19 : 422–424. [CrossRef] [PubMed] [Google Scholar]
  44. Guillet C, Prod’homme M, Balage M, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J 2004 ; 18 : 1586–1587. [CrossRef] [PubMed] [Google Scholar]
  45. Balagopal P, Rooyackers OE, Adey DB, et al. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Am J Physiol 1997 ; 273 : E790–E800. [Google Scholar]
  46. Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun 2021; 12 : 330. [CrossRef] [PubMed] [Google Scholar]
  47. Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol 2017 ; 34 : 1–6. [CrossRef] [PubMed] [Google Scholar]
  48. Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass. Cell Metab 2009 ; 10 : 507–515. [CrossRef] [PubMed] [Google Scholar]
  49. Gouspillou G, Bourdel-Marchasson I, Rouland R, et al. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014 ; 13 : 39–48. [CrossRef] [PubMed] [Google Scholar]
  50. Ferri E, Marzetti E, Calvani R, et al. Role of Age-Related Mitochondrial Dysfunction in Sarcopenia. Int J Mol Sci 2020; 21 : 5236. [CrossRef] [PubMed] [Google Scholar]
  51. Seo DY, Lee SR, Kim N, et al. Age-related changes in skeletal muscle mitochondria: the role of exercise. Integr Med Res 2016 ; 5 : 182–186. [CrossRef] [PubMed] [Google Scholar]
  52. Chabi B, Ljubicic V, Menzies KJ, et al. Hood, Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell 2008 ; 7 : 2–12. [CrossRef] [PubMed] [Google Scholar]
  53. Leduc-Gaudet JP, Hussain SNA, Barreiro E, et al. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22 : 8179. [CrossRef] [PubMed] [Google Scholar]
  54. Migliavacca E, Tay SKH, Patel HP, et al. Mitochondrial oxidative capacity and NAD+ biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun 2019 ; 10 : 5808. [CrossRef] [PubMed] [Google Scholar]
  55. Shen Y, Shi Q, Nong K, et al. Exercise for sarcopenia in older people: A systematic review and network meta-analysis. J Cachexia Sarcopenia Muscle 2023; 14 : 1199–211. [CrossRef] [PubMed] [Google Scholar]
  56. Langhammer B, Bergland A, Rydwik E. The Importance of Physical Activity Exercise among Older People. Biomed Res Int 2018 ; 2018 : 7856823. [CrossRef] [Google Scholar]
  57. Wu PY, Huang KS, Chen KM, et al. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021; 145 : 38–48. [CrossRef] [PubMed] [Google Scholar]
  58. Han L, Wu S, Hu P. The functions of sarcopenia related myokines. Transl Med Aging 2018 ; 2 : 38–41. [CrossRef] [Google Scholar]
  59. Yoo SZ, No MH, Heo JW, et al. Role of exercise in age-related sarcopenia. J Exerc Rehabil 2018 ; 14 : 551–558. [CrossRef] [PubMed] [Google Scholar]
  60. Widajanti N, Soelistijo S, Hadi U, et al. Association between Sarcopenia and Insulin-Like Growth Factor-1, Myostatin, and Insulin Resistance in Elderly Patients Undergoing Hemodialysis. J Aging Res 2022; 2022 : 1327332. [CrossRef] [Google Scholar]
  61. Vinel C, Lukjanenko L, Batut A, et al. The exerkine apelin reverses age-associated sarcopenia. Nat Med 2018 ; 24 : 1360–1371. [CrossRef] [PubMed] [Google Scholar]
  62. De Mello RGB, Dalla Corte RR, Gioscia J, et al. Effects of Physical Exercise Programs on Sarcopenia Management, Dynapenia, and Physical Performance in the Elderly: A Systematic Review of Randomized Clinical Trials. J Aging Res 2019 ; 2019 : 1959486. [PubMed] [Google Scholar]
  63. Durieux AC, Amirouche A, Banzet S, et al. Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 2007 ; 148 : 3140–3147. [CrossRef] [PubMed] [Google Scholar]
  64. McFarlane C, Plummer E, Thomas M, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 2006 ; 209 : 501–514. [CrossRef] [PubMed] [Google Scholar]
  65. Lipina C, Kendall H, McPherron AC, et al. Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett 2010 ; 584 : 2403–2408. [CrossRef] [PubMed] [Google Scholar]
  66. Rooks D, Praestgaard J, Hariry S, et al. Treatment of Sarcopenia with Bimagrumab: Results from a Phase II, Randomized, Controlled. Proof-of-Concept Study. J Am Geriatr Soc 2017 ; 65 : 1988–1995. [CrossRef] [PubMed] [Google Scholar]
  67. Becker C, Lord SR, Studenski SA, Warden SJ, et al. STEADY Group, Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 2015 ; 3 : 948–957. [CrossRef] [PubMed] [Google Scholar]
  68. Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins: a critical review. Cell Signal 2011 ; 23 : 609–620. [CrossRef] [PubMed] [Google Scholar]
  69. Francis-West PH, Abdelfattah A, Chen P, et al. Mechanisms of GDF-5 action during skeletal development. Development 1999 ; 126 : 1305–1315. [CrossRef] [PubMed] [Google Scholar]
  70. Winbanks CE, Chen JL, Qian H, et al. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass. J. Cell Biol 2013 ; 203 : 345–357. [CrossRef] [PubMed] [Google Scholar]
  71. Sartori R, Schirwis E, Blaauw B, et al. BMP signaling controls muscle mass. Nat Genet 2013 ; 45 : 1309–1318. [CrossRef] [PubMed] [Google Scholar]
  72. Traoré M, Gentil C, Benedetto C, et al. An embryonic CaVβ1 isoform promotes muscle mass maintenance via GDF5 signaling in adult mouse. Sci Transl Med 2019; 11 : eaaw1131. [CrossRef] [PubMed] [Google Scholar]
  73. Taylor J, Pereyra A, Zhang T, et al. The Cavβ1a subunit regulates gene expression and suppresses myogenin in muscle progenitor cells. J Cell Biol 2014 ; 205 : 829–846. [CrossRef] [PubMed] [Google Scholar]
  74. Macpherson PCD, Farshi P, Goldman D. Dach2-Hdac9 signaling regulates reinnervation of muscle endplates. Development 2015 ; 142 : 4038–4048. [PubMed] [Google Scholar]
  75. Jones G, Trajanoska K, Santanasto AJ, et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat Commun 2021; 12 : 654. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.