Open Access
Issue
Med Sci (Paris)
Volume 39, Number 4, Avril 2023
Page(s) 359 - 369
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2023053
Published online 24 April 2023
  1. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 2022; ehac237. [Google Scholar]
  2. Humbert M, Kovacs G, Hoeper MM, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J 2022; 2200879. [Google Scholar]
  3. Hoeper MM, Humbert M. The new haemodynamic definition of pulmonary hypertension: evidence prevails, finally!. Eur Respir J 2019 ; 53 : 1900038. [CrossRef] [PubMed] [Google Scholar]
  4. Maron BA, Brittain EL, Hess E, et al. Pulmonary vascular resistance and clinical outcomes in patients with pulmonary hypertension: a retrospective cohort study. Lancet Respir Med 2020; 8 : 873–84. [CrossRef] [PubMed] [Google Scholar]
  5. Humbert M, Guignabert C, Bonnet S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J 2019 ; 53 : 1801887. [CrossRef] [PubMed] [Google Scholar]
  6. Lau EMT, Giannoulatou E, Celermajer DS, et al. Epidemiology and treatment of pulmonary arterial hypertension. Nat Rev Cardiol 2017 ; 14 : 603–614. [CrossRef] [PubMed] [Google Scholar]
  7. Weatherald J, Chaumais M-C, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J 2017 ; 50 : 1700217. [CrossRef] [PubMed] [Google Scholar]
  8. Savale L, Chaumais M-C, Cottin V, et al. Pulmonary hypertension associated with benfluorex exposure. Eur Respir J 2012 ; 40 : 1164–1172. [CrossRef] [PubMed] [Google Scholar]
  9. Abenhaim L, Moride Y, Brenot F, et al. Appetite-suppressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996 ; 335 : 609–616. [CrossRef] [PubMed] [Google Scholar]
  10. Montani D, Lau EM, Descatha A, et al. Occupational exposure to organic solvents: a risk factor for pulmonary veno-occlusive disease. Eur Respir J 2015 ; 46 : 1721–1731. [CrossRef] [PubMed] [Google Scholar]
  11. Montani D, Lau EM, Dorfmüller P, et al. Pulmonary veno-occlusive disease. Eur Respir J 2016 ; 47 : 1518–1534. [CrossRef] [PubMed] [Google Scholar]
  12. Perros F, Humbert M, Dorfmüller P. Smouldering fire or conflagration? An illustrated update on the concept of inflammation in pulmonary arterial hypertension. Eur Respir Rev 2021; 30 : 210161. [CrossRef] [PubMed] [Google Scholar]
  13. Ranchoux B, Antigny F, Rucker-Martin C, et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation 2015 ; 131 : 1006–1018. [CrossRef] [PubMed] [Google Scholar]
  14. Ranchoux B, Günther S, Quarck R, et al. Chemotherapy-induced pulmonary hypertension: role of alkylating agents. Am J Pathol 2015 ; 185 : 356–371. [CrossRef] [PubMed] [Google Scholar]
  15. Perros F, Günther S, Ranchoux B, et al. Mitomycin-Induced Pulmonary Veno-Occlusive Disease: Evidence From Human Disease and Animal Models. Circulation 2015 ; 132 : 834–847. [CrossRef] [PubMed] [Google Scholar]
  16. Caliez J, Riou M, Manaud G, et al. Trichloroethylene increases pulmonary endothelial permeability: implication for pulmonary veno-occlusive disease. Pulm Circ 2020; 10 : 2045894020907884. [CrossRef] [Google Scholar]
  17. Nossent EJ, Antigny F, Montani D, et al. Pulmonary vascular remodeling patterns and expression of general control nonderepressible 2 (GCN2) in pulmonary veno-occlusive disease. J Heart Lung Transplant 2018 ; 37 : 647–655. [CrossRef] [PubMed] [Google Scholar]
  18. Manaud G, Nossent EJ, Lambert M, et al. Comparison of Human and Experimental Pulmonary Veno-Occlusive Disease. Am J Respir Cell Mol Biol 2020; 63 : 118–31. [CrossRef] [PubMed] [Google Scholar]
  19. Santos-Ribeiro D, Godinas L, Pilette C, et al. The integrated stress response system in cardiovascular disease. Drug Discov Today 2018 ; 23 : 920–929. [CrossRef] [PubMed] [Google Scholar]
  20. Valuparampil Varghese M, James J, Eccles CA, et al. Inhibition of Anaplerosis Attenuated Vascular Proliferation in Pulmonary Arterial Hypertension. J Clin Med 2020; 9 : E443. [CrossRef] [PubMed] [Google Scholar]
  21. Perros F, Humbert M, Cohen-Kaminsky S Hypertension artérielle pulmonaire. Un parfum d’auto-immunité. Med Sci (Paris) 2013 ; 29 : 607–616. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  22. Perros F, Dorfmüller P, Souza R, et al. Dendritic cell recruitment in lesions of human and experimental pulmonary hypertension. Eur Respir J 2007 ; 29 : 462–468. [CrossRef] [PubMed] [Google Scholar]
  23. Hautefort A, Girerd B, Montani D, et al. T-helper 17 cell polarization in pulmonary arterial hypertension. Chest 2015 ; 147 : 1610–1620. [CrossRef] [PubMed] [Google Scholar]
  24. Perros F, Dorfmüller P, Montani D, et al. Pulmonary lymphoid neogenesis in idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 2012 ; 185 : 311–321. [CrossRef] [PubMed] [Google Scholar]
  25. Koudstaal T, van Hulst JAC, Das T, et al. DNGR1-Cre-mediated Deletion of Tnfaip3/A20 in Conventional Dendritic Cells Induces Pulmonary Hypertension in Mice. Am J Respir Cell Mol Biol 2020; 63 : 665–80. [CrossRef] [PubMed] [Google Scholar]
  26. van Uden D, Koudstaal T, van Hulst JAC, et al. Central Role of Dendritic Cells in Pulmonary Arterial Hypertension in Human and Mice. Int J Mol Sci 2021; 22 : 1756. [CrossRef] [PubMed] [Google Scholar]
  27. Hautefort A, Mendes-Ferreira P, Sabourin J, et al. Bmpr2 Mutant Rats Develop Pulmonary and Cardiac Characteristics of Pulmonary Arterial Hypertension. Circulation 2019 ; 139 : 932–948. [CrossRef] [PubMed] [Google Scholar]
  28. Sitbon O, Humbert M, Jaïs X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation 2005 ; 111 : 3105–3111. [CrossRef] [PubMed] [Google Scholar]
  29. Montani D, Savale L, Natali D, et al. Long-term response to calcium-channel blockers in non-idiopathic pulmonary arterial hypertension. Eur Heart J 2010 ; 31 : 1898–1907. [CrossRef] [PubMed] [Google Scholar]
  30. Clozel M, Maresta A, Humbert M. Endothelin receptor antagonists. Handb Exp Pharmacol 2013 ; 218 : 199–227. [CrossRef] [PubMed] [Google Scholar]
  31. Galiè N, Ghofrani HA, Torbicki A, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005 ; 353 : 2148–2157. [CrossRef] [PubMed] [Google Scholar]
  32. Galiè N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation 2009 ; 119 : 2894–2903. [CrossRef] [PubMed] [Google Scholar]
  33. Ghofrani H-A, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 2013 ; 369 : 330–340. [CrossRef] [PubMed] [Google Scholar]
  34. Rubin LJ, Mendoza J, Hood M, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol). Results of a randomized trial. Ann Intern Med 1990 ; 112 : 485–491. [CrossRef] [PubMed] [Google Scholar]
  35. Olschewski H, Simonneau G, Galiè N, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med 2002 ; 347 : 322–329. [CrossRef] [PubMed] [Google Scholar]
  36. Simonneau G, Barst RJ, Galie N, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med 2002 ; 165 : 800–804. [CrossRef] [PubMed] [Google Scholar]
  37. Simonneau G, Torbicki A, Hoeper MM, et al. Selexipag: an oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. Eur Respir J 2012 ; 40 : 874–880. [CrossRef] [PubMed] [Google Scholar]
  38. Yusen RD, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirty-second Official Adult Lung and Heart-Lung Transplantation Report–2015; Focus Theme: Early Graft Failure. J Heart Lung Transplant 2015 ; 34 : 1264–1277. [CrossRef] [PubMed] [Google Scholar]
  39. Long L, Ormiston ML, Yang X, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med 2015 ; 21 : 777–785. [CrossRef] [PubMed] [Google Scholar]
  40. Morrell NW, Aldred MA, Chung WK, et al. Genetics and genomics of pulmonary arterial hypertension. Eur Respir J 2019 ; 53 : 1801899. [CrossRef] [PubMed] [Google Scholar]
  41. Humbert M, Montani D, Savale L, et al. Cibler les ligands du récepteur de l’activine de type IIA pour traiter l’hypertension artérielle pulmonaire. Med Sci (Paris) 2021; 37 : 839–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  42. Guignabert C, Humbert M. Targeting transforming growth factor-β receptors in pulmonary hypertension. Eur Respir J 2021; 57 : 2002341. [CrossRef] [PubMed] [Google Scholar]
  43. Humbert M, McLaughlin V, Gibbs JSR, et al. Sotatercept for the Treatment of Pulmonary Arterial Hypertension. N Engl J Med 2021; 384 : 1204–15. [CrossRef] [PubMed] [Google Scholar]
  44. Humbert M, McLaughlin V, Gibbs JSR, et al. Sotatercept for the treatment of pulmonary arterial hypertension: PULSAR open-label extension. Eur Respir J 2023; 61 : 2201347. [CrossRef] [PubMed] [Google Scholar]
  45. Hoeper MM, Badesch DB, Ghofrani HA, et al. Phase 3 Trial of sotatercept for treatment of pulmonary arterial hypertension. N Engl J Med 2023 Mar 6. doi:10.1056/NEJMoa2213558. [PubMed] [Google Scholar]
  46. Hoeper MM, Barst RJ, Bourge RC, et al. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: results of the randomized IMPRES study. Circulation 2013 ; 127 : 1128–1138. [CrossRef] [PubMed] [Google Scholar]
  47. Galkin A, Sitapara R, Clemons B, et al. Inhaled seralutinib exhibits potent efficacy in models of pulmonary arterial hypertension. Eur Respir J 2022; 60 : 2102356. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.