Open Access
Issue
Med Sci (Paris)
Volume 38, Number 10, Octobre 2022
Page(s) 763 - 765
Section Nouvelles
DOI https://doi.org/10.1051/medsci/2022118
Published online 11 October 2022
  1. de Procé Marion S. Des fragments d’ADN synthétisés par l’ADN polymérase α modifient notre génome. Med Sci (Paris) 2015 ; 31 : 821–823. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Lujan SA, Williams JS, Kunkel TA. DNA polymerases divide the labor of genome replication. Trends Cell Biol 2016 ; 26 : 640–654. [CrossRef] [PubMed] [Google Scholar]
  3. Shevelev IV, Hübscher U. The 3’ 5’ exonucleases. Nat Rev Mol Cell Biol 2002 ; 3 : 364–376. [CrossRef] [PubMed] [Google Scholar]
  4. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012 ; 487 : 330–337. [CrossRef] [PubMed] [Google Scholar]
  5. Rayner E, van Gool IC, Palles C, et al. A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer 2016 ; 16 : 71–81. [CrossRef] [PubMed] [Google Scholar]
  6. Alexandrov LB, Nik-Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature 2013 ; 500 : 415–421. [CrossRef] [PubMed] [Google Scholar]
  7. Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature 2020; 578 : 94–101. [CrossRef] [PubMed] [Google Scholar]
  8. Church DN, Briggs SEW, Palles C, et al. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet 2013 ; 22 : 2820–2828. [CrossRef] [PubMed] [Google Scholar]
  9. Palles C, Cazier J-B, Howarth KM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013 ; 45 : 136–144. [CrossRef] [PubMed] [Google Scholar]
  10. Hamzaoui N, Alarcon F, Leulliot N, et al. Genetic, structural, and functional characterization of POLE polymerase proofreading variants allows cancer risk prediction. Genet Med 2020; 22 : 1533–41. [CrossRef] [PubMed] [Google Scholar]
  11. Rousseau B, Bieche I, Pasmant E, et al. PD-1 blockade in solid tumors with defects in polymerase epsilon. Cancer Discov 2022; 12 : 1435–48. [CrossRef] [PubMed] [Google Scholar]
  12. Barbari SR, Kane DP, Moore EA, Shcherbakova PV. Functional Analysis of Cancer-Associated DNA Polymerase ε Variants in Saccharomyces cerevisiae. G3 Bethesda Md 2018; 8 : 1019–29. [CrossRef] [Google Scholar]
  13. Xing X, Kane DP, Bulock CR, et al. A recurrent cancer-associated substitution in DNA polymerase ε produces a hyperactive enzyme. Nat Commun 2019 ; 10 : 374. [CrossRef] [PubMed] [Google Scholar]
  14. Parkash V, Kulkarni Y, Ter Beek J, et al. Structural consequence of the most frequently recurring cancer-associated substitution in DNA polymerase ε. Nat Commun 2019 ; 10 : 373. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.