Open Access
Issue
Med Sci (Paris)
Volume 38, Number 6-7, Juin–Juillet 2022
Page(s) 545 - 552
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022080
Published online 29 June 2022
  1. Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021 ; 17 : 46–64. [CrossRef] [PubMed] [Google Scholar]
  2. Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 2021 ; 9 : 622–42. [CrossRef] [PubMed] [Google Scholar]
  3. Groslambert M, Py BF. NLRP3, un inflammasome sous contrôle. Med Sci (Paris) 2018 ; 34 : 47–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Jamilloux Y, Henry T. Les inflammasomes. Plates-formes de l’immunité innée. Med Sci (Paris) 2013 ; 29 : 975–84. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Farag NS, Breitinger U, Breitinger HG, et al. Viroporins and inflammasomes: A key to understand virus-induced inflammation. Int J Biochem Cell Biol 2020 ; 122 : 105738. [CrossRef] [PubMed] [Google Scholar]
  6. Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep 2016 ; 6 : 27912. [CrossRef] [PubMed] [Google Scholar]
  7. Amin S, Aktar S, Rahman MM, et al. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect 2021 ; 104913. [PubMed] [Google Scholar]
  8. Pan P, Shen M, Yu Z, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 2021 ; 12 : 4664. [Google Scholar]
  9. Rodrigues TS, Sá KSG de, Ishimoto AY, et al. Inflammasomes are activated in response to SARSCoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 2021 ; 218 : e20201707. [CrossRef] [PubMed] [Google Scholar]
  10. Ferreira AC, Soares VC, Azevedo-Quintanilha IG de, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 2021 ; 7 : 43. [CrossRef] [PubMed] [Google Scholar]
  11. Campbell GR, To RK, Hanna J, et al. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 2021 ; 24 : 102295. [CrossRef] [PubMed] [Google Scholar]
  12. Gaidt MM, Ebert TS, Chauhan D, et al. Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity 2016 ; 44 : 833–46. [CrossRef] [PubMed] [Google Scholar]
  13. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015 ; 485 : 330–9. [CrossRef] [Google Scholar]
  14. Shi C-S, Nabar NR, Huang N-N, et al. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019 ; 5 : 101. [CrossRef] [PubMed] [Google Scholar]
  15. De Rivero Vaccari JC, Dietrich WD, Keane RW, et al. The Inflammasome in Times of COVID-19. Front Immunol 2020 ; 11 : 583373. [CrossRef] [PubMed] [Google Scholar]
  16. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID 19. J Immunol 2020 ; 205 : 307–312. [CrossRef] [PubMed] [Google Scholar]
  17. Kucia M, Ratajczak J, Bujko K, et al. An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent manner. Leukemia 2021 ; 35 : 3026–9. [CrossRef] [PubMed] [Google Scholar]
  18. Ma J, Zhu F, Zhao M, et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. EMBO J 2021 ; 40 : e108249. [PubMed] [Google Scholar]
  19. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021 ; 21 : 694–703. [CrossRef] [PubMed] [Google Scholar]
  20. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 ; 395 : 497–506. [CrossRef] [PubMed] [Google Scholar]
  21. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020 ; 584 : 463–9. [CrossRef] [PubMed] [Google Scholar]
  22. Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020 ; 5 : 139834. [CrossRef] [PubMed] [Google Scholar]
  23. Courjon J, Dufies O, Robert A, et al. Heterogeneous NLRP3 inflammasome signature in circulating myeloid cells as a biomarker of COVID-19 severity. Blood Adv 2021 ; 5 : 1523–34. [CrossRef] [PubMed] [Google Scholar]
  24. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020 ; 217 : e20200652. [CrossRef] [PubMed] [Google Scholar]
  25. Gedefaw L, Ullah S, Leung PHM, et al. Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021 ; 10 : 916. [CrossRef] [PubMed] [Google Scholar]
  26. Zhao N, Di B, Xu L-L. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021 ; 61 : 2–15. [CrossRef] [PubMed] [Google Scholar]
  27. Berg DF van den, Te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 2020 ; 11 : 1580. [CrossRef] [PubMed] [Google Scholar]
  28. Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017 ; 14 : 22–35. [CrossRef] [PubMed] [Google Scholar]
  29. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020 ; 181 : 1036-45.e9. [CrossRef] [PubMed] [Google Scholar]
  30. Marchetti C, Swartzwelter B, Gamboni F, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA. 2018 ; 115 : E1530-9. [CrossRef] [Google Scholar]
  31. Magupalli VG, Negro R, Tian Y, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 2020 ; 369 : eaas8995. [CrossRef] [PubMed] [Google Scholar]
  32. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med 2021 ; 9 : 924–32. [CrossRef] [PubMed] [Google Scholar]
  33. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw Open 2020 ; 3 : e2013136. [CrossRef] [PubMed] [Google Scholar]
  34. RECOVERY Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Respir Med 2021 ; 9 : 1419–26. [CrossRef] [PubMed] [Google Scholar]
  35. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA 2021 ; 326 : 230–9. [CrossRef] [PubMed] [Google Scholar]
  36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID19-related pneumonia: A prospective case-control study. Int J Infect Dis 2021 ; 104 : 433–40. [CrossRef] [PubMed] [Google Scholar]
  37. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020 ; 2 : e457–8. [CrossRef] [PubMed] [Google Scholar]
  38. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 2021 ; 9 : 295–304. [CrossRef] [PubMed] [Google Scholar]
  39. Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 2020 ; 369 : 1633–7. [CrossRef] [PubMed] [Google Scholar]
  40. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med 2021 ; 27 : 1752–60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.