Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 6-7, Juin–Juillet 2022
Page(s) 545 - 552
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022080
Publié en ligne 29 juin 2022
  1. Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021 ; 17 : 46–64. [CrossRef] [PubMed] [Google Scholar]
  2. Osuchowski MF, Winkler MS, Skirecki T, et al. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med 2021 ; 9 : 622–42. [CrossRef] [PubMed] [Google Scholar]
  3. Groslambert M, Py BF. NLRP3, un inflammasome sous contrôle. Med Sci (Paris) 2018 ; 34 : 47–53. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  4. Jamilloux Y, Henry T. Les inflammasomes. Plates-formes de l’immunité innée. Med Sci (Paris) 2013 ; 29 : 975–84. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  5. Farag NS, Breitinger U, Breitinger HG, et al. Viroporins and inflammasomes: A key to understand virus-induced inflammation. Int J Biochem Cell Biol 2020 ; 122 : 105738. [CrossRef] [PubMed] [Google Scholar]
  6. Tate MD, Ong JDH, Dowling JK, et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. Sci Rep 2016 ; 6 : 27912. [CrossRef] [PubMed] [Google Scholar]
  7. Amin S, Aktar S, Rahman MM, et al. NLRP3 inflammasome activation in COVID-19: an interlink between risk factors and disease severity. Microbes Infect 2021 ; 104913. [PubMed] [Google Scholar]
  8. Pan P, Shen M, Yu Z, et al. SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation. Nat Commun 2021 ; 12 : 4664. [CrossRef] [PubMed] [Google Scholar]
  9. Rodrigues TS, Sá KSG de, Ishimoto AY, et al. Inflammasomes are activated in response to SARSCoV-2 infection and are associated with COVID-19 severity in patients. J Exp Med 2021 ; 218 : e20201707. [CrossRef] [PubMed] [Google Scholar]
  10. Ferreira AC, Soares VC, Azevedo-Quintanilha IG de, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov 2021 ; 7 : 43. [CrossRef] [PubMed] [Google Scholar]
  11. Campbell GR, To RK, Hanna J, et al. SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience 2021 ; 24 : 102295. [CrossRef] [PubMed] [Google Scholar]
  12. Gaidt MM, Ebert TS, Chauhan D, et al. Human Monocytes Engage an Alternative Inflammasome Pathway. Immunity 2016 ; 44 : 833–46. [CrossRef] [PubMed] [Google Scholar]
  13. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 2015 ; 485 : 330–9. [CrossRef] [Google Scholar]
  14. Shi C-S, Nabar NR, Huang N-N, et al. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 2019 ; 5 : 101. [CrossRef] [PubMed] [Google Scholar]
  15. De Rivero Vaccari JC, Dietrich WD, Keane RW, et al. The Inflammasome in Times of COVID-19. Front Immunol 2020 ; 11 : 583373. [CrossRef] [PubMed] [Google Scholar]
  16. Yap JKY, Moriyama M, Iwasaki A. Inflammasomes and pyroptosis as therapeutic targets for COVID 19. J Immunol 2020 ; 205 : 307–312. [CrossRef] [PubMed] [Google Scholar]
  17. Kucia M, Ratajczak J, Bujko K, et al. An evidence that SARS-Cov-2/COVID-19 spike protein (SP) damages hematopoietic stem/progenitor cells in the mechanism of pyroptosis in Nlrp3 inflammasome-dependent manner. Leukemia 2021 ; 35 : 3026–9. [CrossRef] [PubMed] [Google Scholar]
  18. Ma J, Zhu F, Zhao M, et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage. EMBO J 2021 ; 40 : e108249. [PubMed] [Google Scholar]
  19. Vora SM, Lieberman J, Wu H. Inflammasome activation at the crux of severe COVID-19. Nat Rev Immunol 2021 ; 21 : 694–703. [CrossRef] [PubMed] [Google Scholar]
  20. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 ; 395 : 497–506. [CrossRef] [PubMed] [Google Scholar]
  21. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020 ; 584 : 463–9. [CrossRef] [PubMed] [Google Scholar]
  22. Zhao Y, Qin L, Zhang P, et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight 2020 ; 5 : 139834. [CrossRef] [PubMed] [Google Scholar]
  23. Courjon J, Dufies O, Robert A, et al. Heterogeneous NLRP3 inflammasome signature in circulating myeloid cells as a biomarker of COVID-19 severity. Blood Adv 2021 ; 5 : 1523–34. [CrossRef] [PubMed] [Google Scholar]
  24. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020 ; 217 : e20200652. [CrossRef] [PubMed] [Google Scholar]
  25. Gedefaw L, Ullah S, Leung PHM, et al. Inflammasome Activation-Induced Hypercoagulopathy: Impact on Cardiovascular Dysfunction Triggered in COVID-19 Patients. Cells 2021 ; 10 : 916. [CrossRef] [PubMed] [Google Scholar]
  26. Zhao N, Di B, Xu L-L. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021 ; 61 : 2–15. [CrossRef] [PubMed] [Google Scholar]
  27. Berg DF van den, Te Velde AA. Severe COVID-19: NLRP3 Inflammasome Dysregulated. Front Immunol 2020 ; 11 : 1580. [CrossRef] [PubMed] [Google Scholar]
  28. Mayer-Barber KD, Yan B. Clash of the Cytokine Titans: counter-regulation of interleukin-1 and type I interferon-mediated inflammatory responses. Cell Mol Immunol 2017 ; 14 : 22–35. [CrossRef] [PubMed] [Google Scholar]
  29. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020 ; 181 : 1036-45.e9. [CrossRef] [PubMed] [Google Scholar]
  30. Marchetti C, Swartzwelter B, Gamboni F, et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA. 2018 ; 115 : E1530-9. [CrossRef] [Google Scholar]
  31. Magupalli VG, Negro R, Tian Y, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 2020 ; 369 : eaas8995. [CrossRef] [PubMed] [Google Scholar]
  32. Tardif J-C, Bouabdallaoui N, L’Allier PL, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med 2021 ; 9 : 924–32. [CrossRef] [PubMed] [Google Scholar]
  33. Deftereos SG, Giannopoulos G, Vrachatis DA, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw Open 2020 ; 3 : e2013136. [CrossRef] [PubMed] [Google Scholar]
  34. RECOVERY Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet Respir Med 2021 ; 9 : 1419–26. [CrossRef] [PubMed] [Google Scholar]
  35. Caricchio R, Abbate A, Gordeev I, et al. Effect of Canakinumab vs Placebo on Survival Without Invasive Mechanical Ventilation in Patients Hospitalized With Severe COVID-19: A Randomized Clinical Trial. JAMA 2021 ; 326 : 230–9. [CrossRef] [PubMed] [Google Scholar]
  36. Generali D, Bosio G, Malberti F, et al. Canakinumab as treatment for COVID19-related pneumonia: A prospective case-control study. Int J Infect Dis 2021 ; 104 : 433–40. [CrossRef] [PubMed] [Google Scholar]
  37. Ucciferri C, Auricchio A, Di Nicola M, et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020 ; 2 : e457–8. [CrossRef] [PubMed] [Google Scholar]
  38. Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 2021 ; 9 : 295–304. [CrossRef] [PubMed] [Google Scholar]
  39. Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis. Science 2020 ; 369 : 1633–7. [CrossRef] [PubMed] [Google Scholar]
  40. Kyriazopoulou E, Poulakou G, Milionis H, et al. Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial. Nat Med 2021 ; 27 : 1752–60. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.