Open Access
Issue
Med Sci (Paris)
Volume 38, Number 5, Mai 2022
Page(s) 445 - 452
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022062
Published online 24 May 2022
  1. Legrand P, Catheline D, Rioux V. Les lipides ne doivent plus être diabolisés… ni chez l’adulte, ni chez l’enfant. Med Sci (Paris) 2021; 37 : 41–6. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Cockcroft S. Mammalian lipids : structure, synthesis and function. Essays Biochem 2021; 65 : 813–845. [CrossRef] [PubMed] [Google Scholar]
  3. de Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules 2018 ; 23 : 2583. [CrossRef] [Google Scholar]
  4. Di Vizio D, Adam RM, Kim J, et al. Caveolin-1 interacts with a lipid raft-associated population of fatty acid synthase. Cell Cycle Georget Tex 2008 ; 7 : 2257–2267. [CrossRef] [PubMed] [Google Scholar]
  5. Suburu J, Shi L, Wu J, et al. Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab 2014 ; 306 : 1132–1143. [Google Scholar]
  6. Chirala SS, Wakil SJ. Structure and function of animal fatty acid synthase. Lipids 2004 ; 39 : 1045–1053. [CrossRef] [PubMed] [Google Scholar]
  7. Wang D, Sul HS. Upstream stimulatory factor binding to the E-box at -65 is required for insulin regulation of the fatty acid synthase promoter. J Biol Chem 1997 ; 272 : 26367–26374. [CrossRef] [PubMed] [Google Scholar]
  8. Ferré P, Phan F, Foufelle F. SREBP-1c and lipogenesis in the liver : an update. Biochem J 2021; 478 : 3723–39. [CrossRef] [PubMed] [Google Scholar]
  9. Guillou H, Martin PGP, Pineau T. Transcriptional regulation of hepatic fatty acid metabolism. Subcell Biochem 2008 ; 49 : 3–47. [CrossRef] [PubMed] [Google Scholar]
  10. Li J, Luo J, Zhu J, et al. Regulation of the fatty acid synthase promoter by liver X receptor α through direct and indirect mechanisms in goat mammary epithelial cells. Comp Biochem Physiol B Biochem Mol Biol 2015 ; 184 : 44–51. [CrossRef] [PubMed] [Google Scholar]
  11. He Q, Luo J, Wu J, et al. FoxO1 Knockdown Promotes Fatty Acid Synthesis via Modulating SREBP1 Activities in the Dairy Goat Mammary Epithelial Cells. J Agric Food Chem 2020; 68 : 12067–78. [CrossRef] [PubMed] [Google Scholar]
  12. Baldini SF, Wavelet C, Hainault I, et al. The Nutrient-Dependent O-GlcNAc Modification Controls the Expression of Liver Fatty Acid Synthase. J Mol Biol 2016 ; 428 : 3295–3304. [CrossRef] [PubMed] [Google Scholar]
  13. Floris A, Mazarei M, Yang X, et al. SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract. Biomolecules 2020; 10 : 529. [CrossRef] [Google Scholar]
  14. Choi MS, Jung J-Y, Kim H-J, et al. S-nitrosylation of fatty acid synthase regulates its activity through dimerization. J Lipid Res 2016 ; 57 : 607–615. [CrossRef] [PubMed] [Google Scholar]
  15. Lin H-P, Cheng Z-L, He R-Y, et al. Destabilization of Fatty Acid Synthase by Acetylation Inhibits De Novo Lipogenesis and Tumor Cell Growth. Cancer Res 2016 ; 76 : 6924–6936. [CrossRef] [PubMed] [Google Scholar]
  16. Chirala SS, Chang H, Matzuk M, et al. Fatty acid synthesis is essential in embryonic development : Fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A 2003 ; 100 : 6358–6363. [CrossRef] [PubMed] [Google Scholar]
  17. Bowers M, Liang T, Gonzalez-Bohorquez D, et al. FASN-Dependent Lipid Metabolism Links Neurogenic Stem/Progenitor Cell Activity to Learning and Memory Deficits. Cell Stem Cell 2020; 27 : 98–109.e11. [CrossRef] [PubMed] [Google Scholar]
  18. Razani B, Zhang H, Schulze PC, et al. Fatty acid synthase modulates homeostatic responses to myocardial stress. J Biol Chem 2011 ; 286 : 30949–30961. [CrossRef] [PubMed] [Google Scholar]
  19. Wagle S, Bui A, Ballard PL, et al. Hormonal regulation and cellular localization of fatty acid synthase in human fetal lung. Am J Physiol-Lung Cell Mol Physiol 1999 ; 277 : L381–L390. [CrossRef] [Google Scholar]
  20. Fiorentino M, Zadra G, Palescandolo E, et al. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab Investig J Tech Methods Pathol 2008 ; 88 : 1340–1348. [CrossRef] [PubMed] [Google Scholar]
  21. Wei X, Yang Z, Rey FE, et al. Fatty Acid Synthase Modulates Intestinal Barrier Function through Palmitoylation of Mucin 2. Cell Host Microbe 2012 ; 11 : 140–152. [CrossRef] [PubMed] [Google Scholar]
  22. Faes S, Dormond O. PI3K and AKT : Unfaithful Partners in Cancer. Int J Mol Sci 2015 ; 16 : 21138–21152. [CrossRef] [PubMed] [Google Scholar]
  23. Liu Y, An S, Ward R, et al. G protein-coupled receptors as promising cancer targets. Cancer Lett 2016 ; 376 : 226–239. [CrossRef] [PubMed] [Google Scholar]
  24. Veigel D, Wagner R, Stübiger G, et al. Fatty acid synthase is a metabolic marker of cell proliferation rather than malignancy in ovarian cancer and its precursor cells. Int J Cancer 2015 ; 136 : 2078–2090. [CrossRef] [PubMed] [Google Scholar]
  25. Denechaud PD, Lopez-Mejia IC, Fajas L. Contrôle de l’homéostasie glucido-lipidique par les facteurs du cycle cellulaire CDK4 et E2F1. Med Sci (Paris) 2016 ; 32 : 815–818. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  26. Sourdioux M, Brevelet C, Delabrosse Y, et al. Association of fatty acid synthase gene and malic enzyme gene polymorphisms with fatness in turkeys. Poult Sci 1999 ; 78 : 1651–1657. [CrossRef] [PubMed] [Google Scholar]
  27. Kovacs P, Harper I, Hanson RL, et al. A Novel Missense Substitution (Val1483Ile) in the Fatty Acid Synthase Gene (FAS) Is Associated With Percentage of Body Fat and Substrate Oxidation Rates in Nondiabetic Pima Indians. Diabetes 2004 ; 53 : 1915–1919. [CrossRef] [PubMed] [Google Scholar]
  28. Körner A, Ma L, Franks PW, et al. Sex-specific effect of the Val1483Ile polymorphism in the fatty acid synthase gene (FAS) on body mass index and lipid profile in Caucasian children. Int J Obes 2007 ; 31 : 353–358. [CrossRef] [PubMed] [Google Scholar]
  29. Kumar MV, Shimokawa T, Nagy TR, et al. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci U S A 2002 ; 99 : 1921–1925. [CrossRef] [PubMed] [Google Scholar]
  30. Berndt J, Kovacs P, Ruschke K, et al. Fatty acid synthase gene expression in human adipose tissue : association with obesity and type 2 diabetes. Diabetologia 2007 ; 50 : 1472–1480. [CrossRef] [PubMed] [Google Scholar]
  31. Migita T, Ruiz S, Fornari A, et al. Fatty Acid Synthase : A Metabolic Enzyme and Candidate Oncogene in Prostate Cancer. J Natl Cancer Inst 2009 ; 101 : 519–532. [CrossRef] [PubMed] [Google Scholar]
  32. Bandyopadhyay S, Pai SK, Watabe M, et al. FAS expression inversely correlates with PTEN level in prostate cancer and a PI 3-kinase inhibitor synergizes with FAS siRNA to induce apoptosis. Oncogene 2005 ; 24 : 5389–5395. [CrossRef] [PubMed] [Google Scholar]
  33. Jiang Y, Yin X, Wu L, et al. MAPK/P53-mediated FASN expression in bone tumors. Oncol Lett 2017 ; 13 : 4035–4038. [CrossRef] [PubMed] [Google Scholar]
  34. Graner E, Tang D, Rossi S, et al. The isopeptidase USP2a regulates the stability of fatty acid synthase in prostate cancer. Cancer Cell 2004 ; 5 : 253–261. [CrossRef] [PubMed] [Google Scholar]
  35. Jin Q, Yuan LX, Boulbes D, et al. Fatty acid synthase phosphorylation : a novel therapeutic target in HER2-overexpressing breast cancer cells. Breast Cancer Res BCR 2010 ; 12 : R96. [CrossRef] [Google Scholar]
  36. Furuta E, Pai SK, Zhan R, et al. Fatty Acid Synthase Gene Is Up-regulated by Hypoxia via Activation of Akt and Sterol Regulatory Element Binding Protein-1. Cancer Res 2008 ; 68 : 1003–1011. [CrossRef] [PubMed] [Google Scholar]
  37. Li T, Weng J, Zhang Y, et al. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis 2019 ; 10 : 619. [CrossRef] [PubMed] [Google Scholar]
  38. Shah US, Dhir R, Gollin SM, et al. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum Pathol 2006 ; 37 : 401–409. [CrossRef] [PubMed] [Google Scholar]
  39. Nguyen PL, Ma J, Chavarro JE, et al. Fatty Acid Synthase Polymorphisms, Tumor Expression, Body Mass Index, Prostate Cancer Risk, and Survival. J Clin Oncol 2010 ; 28 : 3958–3964. [CrossRef] [PubMed] [Google Scholar]
  40. Ogino S, Kawasaki T, Ogawa A, et al. Fatty acid synthase overexpression in colorectal cancer is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum Pathol 2007 ; 38 : 842–849. [CrossRef] [PubMed] [Google Scholar]
  41. Dean EJ, Falchook GS, Patel MR, et al. Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. J Clin Oncol 2016 ; 34 : 2512–2512. [CrossRef] [Google Scholar]
  42. Arkenau H-T, Voskoboynik M, Infante J, et al. Evidence of activity of a new mechanism of action (MoA): A first-in-human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640, as monotherapy or in combination. EJC 2015; Abstract 27LBA. https://doi.org/10.1016/S0959-8049(15), 30076–9. [Google Scholar]
  43. Wang YY, Kuhajda FP, Li J, et al. Fatty acid synthase as a tumor marker : its extracellular expression in human breast cancer. J Exp Ther Oncol 2004 ; 4 : 101–110. [PubMed] [Google Scholar]
  44. Collura A, Lefevre JH, Magali Svrcek M, et al. Instabilité des microsatellites et cancer. De l’instabilité du génome à la médecine personnalisée. Med Sci (Paris) 2019 ; 35 : 535–543. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.