Open Access
Issue |
Med Sci (Paris)
Volume 38, Number 4, Avril 2022
|
|
---|---|---|
Page(s) | 374 - 380 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2022041 | |
Published online | 29 April 2022 |
- Carell T, Brandmayr C, Hienzsch A, et al. Structure and Function of Noncanonical Nucleobases. Angew Chem Int Ed 2012 ; 51 : 7110–7131. [CrossRef] [Google Scholar]
- Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016 ; 40 : 575–591. [CrossRef] [PubMed] [Google Scholar]
- Lee Y-J, Dai N, Walsh SE, et al. Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. Proc Natl Acad Sci USA 2018 ; 115 : E3116–E3125. [Google Scholar]
- Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016 ; 116 : 12655–12687. [CrossRef] [PubMed] [Google Scholar]
- Vlot M, Houkes J, Lochs SJA, et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Nucleic Acids Res 2018 ; 46 : 873–885. [CrossRef] [PubMed] [Google Scholar]
- Swinton D, Hattman S, Crain PF, et al. Purification and characterization of the unusual deoxynucleoside, alpha-N-(9-beta-D-2’-deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc Natl Acad Sci USA 1983 ; 80 : 7400–7404. [CrossRef] [PubMed] [Google Scholar]
- Thiaville JJ, Kellner SM, Yuan Y, et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci USA 2016 ; 113 : E1452–E1459. [CrossRef] [PubMed] [Google Scholar]
- Hutinet G, Lee Y, Crécy-Lagard V de, et al. Hypermodified DNA in Viruses of E. coli and Salmonella. EcoSal Plus 2021; 9 : eESP00282019. [CrossRef] [PubMed] [Google Scholar]
- Nikolskaya II, Lopatina NG, Debov SS. Methylated guanine derivative as a minor base in the DNA of phage DDVI Shigella disenteriae. Biochim Biophys Acta 1976 ; 435 : 206–210. [CrossRef] [PubMed] [Google Scholar]
- Dunn DB, Smith JD. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J 1958 ; 68 : 627–636. [CrossRef] [PubMed] [Google Scholar]
- Crippen CS, Lee Y-J, Hutinet G, et al. Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of Campylobacter Viruses. J Virol 2019; 93 : :e01111–19. [CrossRef] [PubMed] [Google Scholar]
- Kirnos MD, Khudyakov IY, Alexandrushkina NI, et al. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature 1977 ; 270 : 369–370. [CrossRef] [PubMed] [Google Scholar]
- Khudyakov IY, Kirnos MD, Alexandrushkina NI, et al. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology 1978 ; 88 : 8–18. [CrossRef] [Google Scholar]
- Salerno D, Marrano CA, Cassina V, et al. Nanomechanics of negatively supercoiled diaminopurine-substituted DNA. Nucleic Acids Res 2021; 49 : 11778–86. [CrossRef] [PubMed] [Google Scholar]
- Bailly C, Waring MJ. The use of diaminopurine to investigate structural properties of nucleic acids and molecular recognition between ligands and DNA. Nucleic Acids Res 1998 ; 26 : 4309–4314. [CrossRef] [PubMed] [Google Scholar]
- Bailly C, Suh D, Waring MJ, et al. Binding of daunomycin to diaminopurine- and/or inosine-substituted DNA. Biochemistry 1998 ; 37 : 1033–1045. [CrossRef] [PubMed] [Google Scholar]
- Szekeres M, Matveyev AV. Cleavage and sequence recognition of 2,6-diaminopurine-containing DNA by site-specific endonucleases. FEBS Lett 1987 ; 222 : 89–94. [CrossRef] [PubMed] [Google Scholar]
- Honzatko RB, Fromm HJ. Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Arch Biochem Biophys 1999 ; 370 : 1–8. [CrossRef] [PubMed] [Google Scholar]
- Solís-Sánchez A, Hernández-Chiñas U, Navarro-Ocaña A, et al. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1. Virol J 2016 ; 13 : 47. [CrossRef] [PubMed] [Google Scholar]
- Bouyoub A, Barbier G, Forterre P, et al. The adenylosuccinate synthetase from the hyperthermophilic archaeon Pyrococcus species displays unusual structural features. J Mol Biol 1996 ; 261 : 144–154. [CrossRef] [PubMed] [Google Scholar]
- Jayalakshmi R, Sumathy K, Balaram H. Purification and Characterization of Recombinant Plasmodium falciparum Adenylosuccinate Synthetase Expressed in Escherichia coli. Protein Expr Purif 2002 ; 25 : 65–72. [CrossRef] [PubMed] [Google Scholar]
- Powell SM, Zalkin H, Dixon JE. Cloning and characterization of the cDNA encoding human adenylosuccinate synthetase. FEBS Lett 1992 ; 303 : 4–10. [CrossRef] [PubMed] [Google Scholar]
- Sleiman D, Garcia PS, Lagune M, et al. A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science 2021; 372 : 516–20. [CrossRef] [PubMed] [Google Scholar]
- Zhou Y, Xu X, Wei Y, et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 2021; 372 : 512–6. [CrossRef] [PubMed] [Google Scholar]
- Pezo V, Jaziri F, Bourguignon P-Y, et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 2021; 372 : 520–4. [CrossRef] [PubMed] [Google Scholar]
- Czernecki D, Legrand P, Tekpinar M, et al. How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nat Commun 2021; 12 : 2420. [CrossRef] [PubMed] [Google Scholar]
- Czernecki D, Bonhomme F, Kaminski PA, et al. Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA. Nat Commun 2021; 12 : 4710. [CrossRef] [PubMed] [Google Scholar]
- Cleaves HJ, Butch C, Burger PB, et al. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. J Chem Inf Model 2019 ; 59 : 4266–4277. [CrossRef] [PubMed] [Google Scholar]
- Cafferty BJ, Fialho DM, Khanam J, et al. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 2016 ; 7 : 11328. [CrossRef] [PubMed] [Google Scholar]
- Eremeeva E, Herdewijn P. Non canonical genetic material. Curr Opin Biotechnol 2019 ; 57 : 25–33. [CrossRef] [PubMed] [Google Scholar]
- Zhang Y, Ptacin JL, Fischer EC, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 2017 ; 551 : 644–647. [CrossRef] [PubMed] [Google Scholar]
- Hoshika S, Leal NA, Kim M-J, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. Science 2019 ; 363 : 884–887. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.