Open Access
Numéro
Med Sci (Paris)
Volume 38, Numéro 4, Avril 2022
Page(s) 374 - 380
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022041
Publié en ligne 29 avril 2022
  1. Carell T, Brandmayr C, Hienzsch A, et al. Structure and Function of Noncanonical Nucleobases. Angew Chem Int Ed 2012 ; 51 : 7110–7131. [CrossRef] [Google Scholar]
  2. Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev 2016 ; 40 : 575–591. [CrossRef] [PubMed] [Google Scholar]
  3. Lee Y-J, Dai N, Walsh SE, et al. Identification and biosynthesis of thymidine hypermodifications in the genomic DNA of widespread bacterial viruses. Proc Natl Acad Sci USA 2018 ; 115 : E3116–E3125. [Google Scholar]
  4. Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016 ; 116 : 12655–12687. [CrossRef] [PubMed] [Google Scholar]
  5. Vlot M, Houkes J, Lochs SJA, et al. Bacteriophage DNA glucosylation impairs target DNA binding by type I and II but not by type V CRISPR-Cas effector complexes. Nucleic Acids Res 2018 ; 46 : 873–885. [CrossRef] [PubMed] [Google Scholar]
  6. Swinton D, Hattman S, Crain PF, et al. Purification and characterization of the unusual deoxynucleoside, alpha-N-(9-beta-D-2’-deoxyribofuranosylpurin-6-yl)glycinamide, specified by the phage Mu modification function. Proc Natl Acad Sci USA 1983 ; 80 : 7400–7404. [CrossRef] [PubMed] [Google Scholar]
  7. Thiaville JJ, Kellner SM, Yuan Y, et al. Novel genomic island modifies DNA with 7-deazaguanine derivatives. Proc Natl Acad Sci USA 2016 ; 113 : E1452–E1459. [CrossRef] [PubMed] [Google Scholar]
  8. Hutinet G, Lee Y, Crécy-Lagard V de, et al. Hypermodified DNA in Viruses of E. coli and Salmonella. EcoSal Plus 2021; 9 : eESP00282019. [CrossRef] [PubMed] [Google Scholar]
  9. Nikolskaya II, Lopatina NG, Debov SS. Methylated guanine derivative as a minor base in the DNA of phage DDVI Shigella disenteriae. Biochim Biophys Acta 1976 ; 435 : 206–210. [CrossRef] [PubMed] [Google Scholar]
  10. Dunn DB, Smith JD. The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem J 1958 ; 68 : 627–636. [CrossRef] [PubMed] [Google Scholar]
  11. Crippen CS, Lee Y-J, Hutinet G, et al. Deoxyinosine and 7-Deaza-2-Deoxyguanosine as Carriers of Genetic Information in the DNA of Campylobacter Viruses. J Virol 2019; 93 : :e01111–19. [CrossRef] [PubMed] [Google Scholar]
  12. Kirnos MD, Khudyakov IY, Alexandrushkina NI, et al. 2-aminoadenine is an adenine substituting for a base in S-2L cyanophage DNA. Nature 1977 ; 270 : 369–370. [CrossRef] [PubMed] [Google Scholar]
  13. Khudyakov IY, Kirnos MD, Alexandrushkina NI, et al. Cyanophage S-2L contains DNA with 2,6-diaminopurine substituted for adenine. Virology 1978 ; 88 : 8–18. [CrossRef] [Google Scholar]
  14. Salerno D, Marrano CA, Cassina V, et al. Nanomechanics of negatively supercoiled diaminopurine-substituted DNA. Nucleic Acids Res 2021; 49 : 11778–86. [CrossRef] [PubMed] [Google Scholar]
  15. Bailly C, Waring MJ. The use of diaminopurine to investigate structural properties of nucleic acids and molecular recognition between ligands and DNA. Nucleic Acids Res 1998 ; 26 : 4309–4314. [CrossRef] [PubMed] [Google Scholar]
  16. Bailly C, Suh D, Waring MJ, et al. Binding of daunomycin to diaminopurine- and/or inosine-substituted DNA. Biochemistry 1998 ; 37 : 1033–1045. [CrossRef] [PubMed] [Google Scholar]
  17. Szekeres M, Matveyev AV. Cleavage and sequence recognition of 2,6-diaminopurine-containing DNA by site-specific endonucleases. FEBS Lett 1987 ; 222 : 89–94. [CrossRef] [PubMed] [Google Scholar]
  18. Honzatko RB, Fromm HJ. Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Arch Biochem Biophys 1999 ; 370 : 1–8. [CrossRef] [PubMed] [Google Scholar]
  19. Solís-Sánchez A, Hernández-Chiñas U, Navarro-Ocaña A, et al. Genetic characterization of ØVC8 lytic phage for Vibrio cholerae O1. Virol J 2016 ; 13 : 47. [CrossRef] [PubMed] [Google Scholar]
  20. Bouyoub A, Barbier G, Forterre P, et al. The adenylosuccinate synthetase from the hyperthermophilic archaeon Pyrococcus species displays unusual structural features. J Mol Biol 1996 ; 261 : 144–154. [CrossRef] [PubMed] [Google Scholar]
  21. Jayalakshmi R, Sumathy K, Balaram H. Purification and Characterization of Recombinant Plasmodium falciparum Adenylosuccinate Synthetase Expressed in Escherichia coli. Protein Expr Purif 2002 ; 25 : 65–72. [CrossRef] [PubMed] [Google Scholar]
  22. Powell SM, Zalkin H, Dixon JE. Cloning and characterization of the cDNA encoding human adenylosuccinate synthetase. FEBS Lett 1992 ; 303 : 4–10. [CrossRef] [PubMed] [Google Scholar]
  23. Sleiman D, Garcia PS, Lagune M, et al. A third purine biosynthetic pathway encoded by aminoadenine-based viral DNA genomes. Science 2021; 372 : 516–20. [CrossRef] [PubMed] [Google Scholar]
  24. Zhou Y, Xu X, Wei Y, et al. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science 2021; 372 : 512–6. [CrossRef] [PubMed] [Google Scholar]
  25. Pezo V, Jaziri F, Bourguignon P-Y, et al. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 2021; 372 : 520–4. [CrossRef] [PubMed] [Google Scholar]
  26. Czernecki D, Legrand P, Tekpinar M, et al. How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nat Commun 2021; 12 : 2420. [CrossRef] [PubMed] [Google Scholar]
  27. Czernecki D, Bonhomme F, Kaminski PA, et al. Characterization of a triad of genes in cyanophage S-2L sufficient to replace adenine by 2-aminoadenine in bacterial DNA. Nat Commun 2021; 12 : 4710. [CrossRef] [PubMed] [Google Scholar]
  28. Cleaves HJ, Butch C, Burger PB, et al. One Among Millions: The Chemical Space of Nucleic Acid-Like Molecules. J Chem Inf Model 2019 ; 59 : 4266–4277. [CrossRef] [PubMed] [Google Scholar]
  29. Cafferty BJ, Fialho DM, Khanam J, et al. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water. Nat Commun 2016 ; 7 : 11328. [CrossRef] [PubMed] [Google Scholar]
  30. Eremeeva E, Herdewijn P. Non canonical genetic material. Curr Opin Biotechnol 2019 ; 57 : 25–33. [CrossRef] [PubMed] [Google Scholar]
  31. Zhang Y, Ptacin JL, Fischer EC, et al. A semi-synthetic organism that stores and retrieves increased genetic information. Nature 2017 ; 551 : 644–647. [CrossRef] [PubMed] [Google Scholar]
  32. Hoshika S, Leal NA, Kim M-J, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. Science 2019 ; 363 : 884–887. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.