Open Access
Med Sci (Paris)
Volume 38, Number 3, Mars 2022
Page(s) 263 - 273
Section M/S Revues
Published online 25 March 2022
  1. Léger J. Dépistage de l’hypothyroïdie congénitale. Med Sci (Paris) 2021; 37 : 474–81. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Barry Y, Bonaldi C, Goulet V, et al. Increased incidence of congenital hypothyroidism in France from 1982 to 2012: a nationwide multicenter analysis. Ann Epidemiol 2016 ; 26 : 100–105. [CrossRef] [PubMed] [Google Scholar]
  3. Cavarzere P, Castanet M, Polak M, et al. Clinical description of infants with congenital hypothyroidism and iodide organification defects. Horm Res 2008 ; 70 : 240–248. [CrossRef] [PubMed] [Google Scholar]
  4. Trueba SS, Augé J, Mattei G, et al. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab 2005 ; 90 : 455–462. [CrossRef] [PubMed] [Google Scholar]
  5. Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 2017 ; 458 : 6–15. [CrossRef] [PubMed] [Google Scholar]
  6. Stoupa A, Kariyawasam D, Carré A, Polak M. Update of Thyroid Developmental Genes. Endocrinol Metab Clin North Am 2016 ; 45 : 243–254. [CrossRef] [PubMed] [Google Scholar]
  7. Carré A, Stoupa A, Kariyawasam D, et al. Mutations in BOREALIN cause thyroid dysgenesis. Hom Mol Genet 2017 ; 26 : 599–610. [Google Scholar]
  8. Zou M, Alzahrani AS, Al-Odaib A, et al. Molecular Analysis of Congenital Hypothyroidism in Saudi Arabia: SLC26A7 Mutation Is a Novel Defect in Thyroid Dyshormonogenesis. J Clin Endocrinol Metab 2018 ; 103 : 1889–1898. [CrossRef] [PubMed] [Google Scholar]
  9. Levy-Strumpf N, Culotti JG. Netrins and Wnts function redundantly to regulate antero-posterior and dorso-ventral guidance in C. elegans. PLoS Genet 2014 ; 10 : e1004381. [CrossRef] [PubMed] [Google Scholar]
  10. Méneret A, Franz EA, Trouillard O, et al. Mutations in the netrin-1 gene cause congenital mirror movements. J Clin Invest 2017 ; 127 : 3923–3936. [CrossRef] [PubMed] [Google Scholar]
  11. Opitz R, Hitz MP, Vandernoot I, et al. Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 2015 ; 156 : 377–388. [CrossRef] [PubMed] [Google Scholar]
  12. Marelli F, Persani L. Role of Jagged1-Notch pathway in thyroid development. J Endocrinol Invest 2018 ; 41 : 75–81. [CrossRef] [PubMed] [Google Scholar]
  13. de Filippis T, Marelli F, Nebbia G, et al. JAG1 Loss-Of-Function Variations as a Novel Predisposing Event in the Pathogenesis of Congenital Thyroid Defects. J Clin Endocrinol Metab 2016 ; 101 : 861–870. [CrossRef] [PubMed] [Google Scholar]
  14. Stoupa A, Adam F, Kariyawasam D, et al. TUBB1 mutations cause thyroid dysgenesis associated with abnormal platelet physiology. EMBO Mol Med 2018 ; 10 : e9569. [CrossRef] [PubMed] [Google Scholar]
  15. Choukair D, Eberle B, Vick P, et al. Identification of Transient Receptor Potential Channel 4-Associated Protein as a Novel Candidate Gene Causing Congenital Primary Hypothyroidism. Horm Res Paediatr 2020; 93 : 16–29. [CrossRef] [PubMed] [Google Scholar]
  16. Reale C, Iervolino A, Scudiero I, et al. NF-κB Essential Modulator (NEMO) Is Critical for Thyroid Function. J Biol Chem 2016 ; 291 : 5765–5773. [CrossRef] [PubMed] [Google Scholar]
  17. Yang RM, Zhan M, Zhou QY, et al. Upregulation of GBP1 in thyroid primordium is required for developmental thyroid morphogenesis. Genet Med 2021; 23 : 1944–51. [CrossRef] [PubMed] [Google Scholar]
  18. Abu-Khudir R, Larrivée-Vanier S, Wasserman JD, Deladoëy J. Disorders of thyroid morphogenesis. Best Pr. Res Clin Endocrinol Metab 2017 ; 31 : 143–159. [CrossRef] [Google Scholar]
  19. Motokawa M, Watanabe S, Nakatomi A, et al. A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome. J Hum Genet 2018 ; 63 : 387–390. [CrossRef] [PubMed] [Google Scholar]
  20. Loebel DA, Plageman TF, Jr, Tang TL, et al. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open 2016 ; 5 : 130–139. [CrossRef] [PubMed] [Google Scholar]
  21. Ghoumid J, Stichelbout M, Jourdain AS, et al. Blepharocheilodontic syndrome is a CDH1 pathway-related disorder due to mutations in CDH1 and CTNND1. Genet Med 2017 ; 19 : 1013–1021. [CrossRef] [PubMed] [Google Scholar]
  22. Kariyawasam D, Carré A, Luton D, Polak M. Down syndrome and nonautoimmune hypothyroidisms in neonates and infants. Horm Res Paediatr 2015 ; 83 : 126–131. [CrossRef] [PubMed] [Google Scholar]
  23. Kariyawasam D, Rachdi L, Carré A, et al. DYRK1A BAC transgenic mouse: a new model of thyroid dysgenesis in Down syndrome. Endocrinology. 2015 ; 156 : 171–180. [Google Scholar]
  24. Cangul H, Liao XH, Schoenmakers E, et al. Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism. JCI Insight 2018 ; 3 : e99631. [CrossRef] [Google Scholar]
  25. Stoupa A, Hage Chehade GA, Chaabane R, et al. High Diagnostic Yield of Targeted Next-Generation Sequencing in a Cohort of Patients with Congenital Hypothyroidism Due to Dyshormonogenesis. Front Endocrinol 2021; 11 : 545339. [CrossRef] [PubMed] [Google Scholar]
  26. Kühnen P, Turan S, Fröhler S, et al. Identification of PENDRIN (SLC26A4) mutations in patients with congenital hypothyroidism and “apparent” thyroid dysgenesis. J Clin Endocrinol Metab 2014 ; 99 : E169–E176. [CrossRef] [PubMed] [Google Scholar]
  27. Srichomkwun P, Takamatsu J, Nickerson DA, et al. DUOX2 Gene Mutation Manifesting as Resistance to Thyrotropin Phenotype. Thyroid. Thyroid 2016 ; 27 : 129–131. [Google Scholar]
  28. Stoupa A, Chaabane R, Guériouz M, et al. Thyroid Hypoplasia in Congenital Hypothyroidism Associated with Thyroid Peroxidase Mutations. Thyroid 2018 ; 28 : 941–944. [CrossRef] [PubMed] [Google Scholar]
  29. Kizys MML, Louzada RA, Mitne-Neto M, et al. DUOX2 Mutations Are Associated With Congenital Hypothyroidism With Ectopic Thyroid Gland. J Clin Endocrinol Metab 2017 ; 102 : 4060–4071. [CrossRef] [PubMed] [Google Scholar]
  30. Aycan Z, Cangul H, Muzza M, et al. Digenic DUOX1 and DUOX2 Mutations in Cases With Congenital Hypothyroidism. J Clin Endocrinol Metab 2017 ; 102 : 3085–3090. [CrossRef] [PubMed] [Google Scholar]
  31. Persani L, Cangiano B, Bonomi M. The diagnosis and management of central hypothyroidism in 2018. Endocr Connect 2019 ; 8 : R44–R54. [CrossRef] [PubMed] [Google Scholar]
  32. Persani L, Brabant G, Dattani M, et al. 2018 European Thyroid Association (ETA) Guidelines on the Diagnosis and Management of Central Hypothyroidism. Eur Thyroid J 2018 ; 7 : 225–237. [CrossRef] [PubMed] [Google Scholar]
  33. Miyai K, Azukizawa M, Kumahara Y. Familial isolated thyrotropin deficiency with cretinism. N Engl J Med 1971 ; 285 : 1043–1048. [CrossRef] [PubMed] [Google Scholar]
  34. Bonomi M, Proverbio MC, Weber G, et al. Hyperplastic pituitary gland, high serum glycoprotein hormone alpha-subunit, and variable circulating thyrotropin (TSH) levels as hallmark of central hypothyroidism due to mutations of the TSH beta gene. J Clin Endocrinol Metab 2001 ; 86 : 1600–1604. [PubMed] [Google Scholar]
  35. Bonomi M, Busnelli M, Beck-Peccoz P, et al. A family with complete resistance to thyrotropin-releasing hormone. N Engl J Med 2009 ; 360 : 731–734. [CrossRef] [PubMed] [Google Scholar]
  36. Sun Y, Bak B, Schoenmakers N, et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet 2012 ; 44 : 1375–1381. [CrossRef] [PubMed] [Google Scholar]
  37. Joustra SD, Heinen CA, Schoenmakers N, et al. IGSF1 Deficiency: Lessons From an Extensive Case Series and Recommendations for Clinical Management. J Clin Endocrinol Metab 2016 ; 102 : 2125. [Google Scholar]
  38. Heinen CA, Losekoot M, Sun Y, et al. Mutations in TBL1X Are Associated With Central Hypothyroidism. J Clin Endocrinol Metab 2016 ; 101 : 4564–4573. [CrossRef] [PubMed] [Google Scholar]
  39. Heinen CA, de Vries EM, Alders M, et al. Mutations in IRS4 are associated with central hypothyroidism. J Med Genet 2018 ; 55 : 693–700. [CrossRef] [PubMed] [Google Scholar]
  40. Pépin L, Colin E, Tessarech M, et al. A New Case of PCSK1 Pathogenic Variant With Congenital Proprotein Convertase 1/3 Deficiency and Literature Review. J Clin Endocrinol Metab 2019 ; 104 : 985–993. [CrossRef] [PubMed] [Google Scholar]
  41. Verberne EA, Faries S, Mannens MMAM, et al. Expanding the phenotype of biallelic RNPC3 variants associated with growth hormone deficiency. AM J Med Genet A 2020; 182 : 1952–6. [CrossRef] [PubMed] [Google Scholar]
  42. Léger J, Marinovic D, Garel C, et al. Thyroid developmental anomalies in first degree relatives of children with congenital hypothyroidism. J Clin Endocrinol Metab 2002 ; 87 : 575–580. [CrossRef] [PubMed] [Google Scholar]
  43. Stoppa-Vaucher S, Van Vliet G, Deladoëy J. Variation by ethnicity in the prevalence of congenital hypothyroidism due to thyroid dysgenesis. Thyroid 2011 ; 21 : 13–18. [CrossRef] [PubMed] [Google Scholar]
  44. Passeri E, Frigerio M, De Filippis T, et al. Increased risk for non-autoimmune hypothyroidism in young patients with congenital heart defects. J Clin Endocrinol Metab 2011 ; 96 : E1115–E1119. [CrossRef] [PubMed] [Google Scholar]
  45. Castanet M, Lyonnet S, Bonaïti-Pellié C, et al. Familial forms of thyroid dysgenesis among infants with congenital hypothyroidism. N Engl J Med 2000 ; 343 : 441–442. [CrossRef] [PubMed] [Google Scholar]
  46. de Filippis T, Gelmini G, Paraboschi E, et al. A frequent oligogenic involvement in congenital hypothyroidism. Hum Mol Genet 2017 ; 26 : 2507–2514. [CrossRef] [PubMed] [Google Scholar]
  47. Amendola E, De Luca P, Macchia PE, et al. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 2005 ; 146 : 5038–5047. [CrossRef] [PubMed] [Google Scholar]
  48. Stoupa A, Kariyawasam D, Muzza M, et al. New genetics in congenital hypothyroidism. Endocrine 2021; 71 : 696–705. [CrossRef] [PubMed] [Google Scholar]
  49. Carré A, Castanet M, Sura-Trueba S, et al. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum Genet 2007 ; 122 : 467–476. [CrossRef] [PubMed] [Google Scholar]
  50. Perry R, Heinrichs C, Bourdoux P, et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J Clin Endocrinol Metab 2002 ; 87 : 4027–4077. [Google Scholar]
  51. Abu-Khudir R, Magne F, Chanoine JP, et al. Role for tissue-dependent methylation differences in the expression of FOXE1 in nontumoral thyroid glands. J Clin Endocrinol Metab 2014 ; 99 : E1120–E1129. [CrossRef] [PubMed] [Google Scholar]
  52. Abu-Khudir R, Paquette J, Lefort A, et al. Transcriptome, methylome and genomic variations analysis of ectopic thyroid glands. PLoS One 2010 ; 5 : e13420. [CrossRef] [PubMed] [Google Scholar]
  53. Magne F, Ge B, Larrivée-Vanier S, et al. Demonstration of autosomal monoallelic expression in thyroid tissue assessed by whole-exome and bulk RNA sequencing. Thyroid 2016 ; 26 : 852–859. [CrossRef] [PubMed] [Google Scholar]
  54. Magne F, Serpa R, Van Vliet G, et al. Somatic mutations are not observed by exome sequencing of lymphocyte DNA from monozygotic twins discordant for congenital hypothyroidism due to thyroid dysgenesis. Horm Res Paediatr 2014 ; 83 : 79–85. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.