Open Access
Issue
Med Sci (Paris)
Volume 38, Number 3, Mars 2022
Page(s) 255 - 262
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2022024
Published online 25 March 2022
  1. Bourgeron TRustin P, Chretien D, et al. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 1995 ; 11 : 144–149. [CrossRef] [PubMed] [Google Scholar]
  2. Warburg O. On the origin of cancer cells. Science 1956 ; 123 : 309–314. [Google Scholar]
  3. Baysal BE, Ferrell RE, Willett-Brozick JE, et al. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 2000 ; 287 : 848–851. [CrossRef] [PubMed] [Google Scholar]
  4. Lenders JWM,Kerstens MN, Amar L, et al. Genetics, diagnosis, management and future directions of research of phaeochromocytoma and paraganglioma: a position statement and consensus of the Working Group on Endocrine Hypertension of the European Society of Hypertension. J Hypertens 2020; 38 : 1443–56. [CrossRef] [PubMed] [Google Scholar]
  5. Favier J, Amar L, Gimenez-Roqueplo APParaganglioma and phaeochromocytoma: from genetics to personalized medicine. Nat Rev Endocrinol 2015 ; 11 : 101–111. [CrossRef] [PubMed] [Google Scholar]
  6. Ni Y, Seballos S, Ganapathi S, et al. Germline and somatic SDHx alterations in apparently sporadic differentiated thyroid cancer. Endocr Relat Cancer 2015 ; 22 : 121–130. [CrossRef] [PubMed] [Google Scholar]
  7. Niemeijer ND, Papathomas TG, Korpershoek E, et al. Succinate Dehydrogenase (SDH)-Deficient Pancreatic Neuroendocrine Tumor Expands the SDH-Related Tumor Spectrum. J Clin Endocrinol Metab 2015 ; 100 : E1386–E1393. [CrossRef] [PubMed] [Google Scholar]
  8. Xekouki P, Pacak K, Almeida M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH?. J Clin Endocrinol Metab 2012 ; 97 : E357–E366. [CrossRef] [PubMed] [Google Scholar]
  9. Haller F, Moskalev EA, Faucz FR, et al. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr Relat Cancer 2014 ; 21 : 567–577. [CrossRef] [PubMed] [Google Scholar]
  10. Weinhold N, Jacobsen A, Schultz N, et al. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat Genet 2014 ; 46 : 1160–1165. [CrossRef] [PubMed] [Google Scholar]
  11. Sciacovelli M, Guzzo G, Morello V, et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 2013 ; 17 : 988–999. [CrossRef] [PubMed] [Google Scholar]
  12. Bénit P, Kahn A, Chretien D, et al. Evolutionarily conserved susceptibility of the mitochondrial respiratory chain to SDHI pesticides and its consequence on the impact of SDHIs on human cultured cells. PLoS One 2019 ; 14 : e0224132. [CrossRef] [PubMed] [Google Scholar]
  13. Morin A, Letouze E, Gimenez-Roqueplo AP, et al. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy. Int J Cancer 2014 ; 135 : 2237–2248. [CrossRef] [PubMed] [Google Scholar]
  14. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 2001 ; 69 : 1186–1197. [CrossRef] [PubMed] [Google Scholar]
  15. Kim E, Rath EM, Tsang VHM, et al. Structural and functional consequences of succinate dehydrogenase subunit B mutations. Endocr Relat Cancer 2015 ; 22 : 387–397. [CrossRef] [PubMed] [Google Scholar]
  16. Burnichon N, Mazzella J-M, Drui D, et al. Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. J Med Genet 2017 ; 54 : 125–133. [CrossRef] [PubMed] [Google Scholar]
  17. Amar L, Baudin E, Burnichon N, et al. Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab 2007 ; 92 : 3822–3828. [CrossRef] [PubMed] [Google Scholar]
  18. Hescot S, Curras-Freixes M, Deutschbein T, et al. Prognosis of Malignant Pheochromocytoma and Paraganglioma (MAPP-Prono Study): A European Network for the Study of Adrenal Tumors Retrospective Study. J Clin Endocrinol Metab 2019 ; 104 : 2367–2374. [CrossRef] [PubMed] [Google Scholar]
  19. Burnichon N, Rohmer V, Amar L, et al. The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 2009 ; 94 : 2817–2827. [CrossRef] [PubMed] [Google Scholar]
  20. Janeway KA, Kim SY, Lodish M, et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci U S A 2011 ; 108 : 314–318. [CrossRef] [PubMed] [Google Scholar]
  21. Ricketts C, Woodward ER, Killick P, et al. Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 2008 ; 100 : 1260–1262. [CrossRef] [PubMed] [Google Scholar]
  22. Losman J-A, Koivunen P, Kaelin WG. 2-Oxoglutarate-dependent dioxygenases in cancer. Nat Rev Cancer 2020; 20 : 710–26. [CrossRef] [PubMed] [Google Scholar]
  23. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011 ; 144 : 646–674. [CrossRef] [PubMed] [Google Scholar]
  24. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001 ; 292 : 468–472. [CrossRef] [PubMed] [Google Scholar]
  25. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001 ; 292 : 464–468. [CrossRef] [PubMed] [Google Scholar]
  26. Favier J, Brière JJ, Burnichon N, et al. The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS ONE 2009 ; 4(9): e7094. [CrossRef] [PubMed] [Google Scholar]
  27. Gimenez-Roqueplo AP, Favier J, Rustin P, et al. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 2001 ; 69 : 1186–1197. [CrossRef] [PubMed] [Google Scholar]
  28. Briere JJ, Favier J, Benit P, et al. Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet 2005 ; 14 : 3263–3269. [CrossRef] [PubMed] [Google Scholar]
  29. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005 ; 7 : 77–85. [CrossRef] [PubMed] [Google Scholar]
  30. Dahia PL, Ross KN, Wright ME, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005 ; 1 : 72–80. [Google Scholar]
  31. Burnichon N, Briere JJ, Libe R, et al. SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 2010 ; 19 : 3011–3020. [CrossRef] [PubMed] [Google Scholar]
  32. Morin A, Goncalves J, Moog S, et al. TET-Mediated Hypermethylation Primes SDH-Deficient Cells for HIF2α-Driven Mesenchymal Transition. Cell Rep 2020; 30 : 4551–66.e7. [CrossRef] [PubMed] [Google Scholar]
  33. Bechmann N, Moskopp ML, Ullrich M, et al. HIF2α supports pro-metastatic behavior in pheochromocytomas/paragangliomas. Endocr Relat Cancer 2020; 27 : 625–40. [CrossRef] [PubMed] [Google Scholar]
  34. Seifert V, Richter S, Bechmann N, et al. HIF2alpha-Associated Pseudohypoxia Promotes Radioresistance in Pheochromocytoma: Insights from 3D Models. Cancers (Basel) 2021; 13 : 385. [CrossRef] [PubMed] [Google Scholar]
  35. Loriot C, Burnichon N, Gadessaud N, et al. Epithelial to Mesenchymal Transition Is Activated in Metastatic Pheochromocytomas and Paragangliomas Caused by SDHB Gene Mutations. J Clin Endocrinol Metab 2012 ; 97 : E954–E962. [CrossRef] [PubMed] [Google Scholar]
  36. Loriot C, Domingues M, Berger A, et al. Deciphering the molecular basis of invasiveness in Sdhb-deficient cells. Oncotarget 2015 ; 6 : 32955–32965. [CrossRef] [PubMed] [Google Scholar]
  37. Toledo RA. New HIF2alpha inhibitors: potential implications as therapeutics for advanced pheochromocytomas and paragangliomas. Endocr Relat Cancer 2017 ; 24 : C9–19. [CrossRef] [PubMed] [Google Scholar]
  38. Letouze E, Martinelli C, Loriot C, et al. SDH Mutations Establish a Hypermethylator Phenotype in Paraganglioma. Cancer Cell 2013 ; 23 : 739–752. [CrossRef] [PubMed] [Google Scholar]
  39. Killian JK, Kim SY, Miettinen M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 2013 ; 3 : 648–657. [CrossRef] [PubMed] [Google Scholar]
  40. Eisenhofer G, Pacak K, Huynh TT, et al. Catecholamine metabolomic and secretory phenotypes in phaeochromocytoma. Endocr Relat Cancer 2011 ; 18 : 97–111. [Google Scholar]
  41. Sulkowski PL, Sundaram RK, Oeck S, et al. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat Genet 2018 ; 50 : 1086–1092. [CrossRef] [PubMed] [Google Scholar]
  42. Cardaci S, Zheng L, MacKay G, et al. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat Cell Biol 2015 ; 17 : 1317–1326. [CrossRef] [PubMed] [Google Scholar]
  43. Lussey-Lepoutre C, Hollinshead KE, Ludwig C, et al. Loss of succinate dehydrogenase activity results in dependency on pyruvate carboxylation for cellular anabolism. Nat Commun 2015 ; 6 : 8784. [CrossRef] [PubMed] [Google Scholar]
  44. Goncalves J, Moog S, Morin A, et al. Loss of SDHB Promotes Dysregulated Iron Homeostasis, Oxidative Stress, and Sensitivity to Ascorbate. Cancer Res 2021; 81 : 3480–94. [CrossRef] [PubMed] [Google Scholar]
  45. Liu Y, Pang Y, Zhu B, et al. Therapeutic Targeting of SDHB-Mutated Pheochromocytoma/Paraganglioma with Pharmacologic Ascorbic Acid. Clin Cancer Res 2020; 26 : 3868–80. [CrossRef] [PubMed] [Google Scholar]
  46. Ngo B, Van Riper JM, Cantley LC, et al. Targeting cancer vulnerabilities with high-dose vitamin C. Nat Rev Cancer 2019 ; 19 : 271–282. [CrossRef] [PubMed] [Google Scholar]
  47. Wu J-Y, Huang T-W, Hsieh Y-T, et al. Cancer-Derived Succinate Promotes Macrophage Polarization and Cancer Metastasis via Succinate Receptor. Mol Cell 2020; 77 : 213–27.e5. [PubMed] [Google Scholar]
  48. Mu X, Zhao T, Xu C, et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget 2017 ; 8 : 13174–13185. [CrossRef] [PubMed] [Google Scholar]
  49. Broudin C, Favier J, Verkarre V, et al. [Pathologist contribution in the diagnosis of hereditary predisposition to paranganglioma and pheochromocytoma]. Ann Pathol 2020; 40 : 134–41. [CrossRef] [PubMed] [Google Scholar]
  50. Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, et al. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 2015 ; 6 : 38777–38788. [CrossRef] [PubMed] [Google Scholar]
  51. Richter S, Peitzsch M, Rapizzi E, et al. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab 2014 ; 99 : 3903–3911. [CrossRef] [PubMed] [Google Scholar]
  52. Lussey-Lepoutre C, Bellucci A, Morin A, et al. In Vivo Detection of Succinate by Magnetic Resonance Spectroscopy as a Hallmark of SDHx Mutations in Paraganglioma. Clin Cancer Res 2016 ; 22 : 1120–1129. [CrossRef] [PubMed] [Google Scholar]
  53. Varoquaux A, le Fur Y, Imperiale A, et al. Magnetic resonance spectroscopy of paragangliomas: new insights into in vivo metabolomics. Endocr Relat Cancer 2015 ; 22 : M1–M8. [CrossRef] [PubMed] [Google Scholar]
  54. Lussey-Lepoutre C, Bellucci A, Burnichon N, et al. Succinate detection using in vivo 1H-MR spectroscopy identifies germline and somatic SDHx mutations in paragangliomas. Eur J Nucl Med Mol Imaging 2020; 47 : 1510–7. [CrossRef] [PubMed] [Google Scholar]
  55. Hadoux J, Favier J, Scoazec JY, et al. SDHB mutations are associated with response to temozolomide in patients with metastatic pheochromocytoma or paraganglioma. Int J Cancer 2014 ; 135 : 2711–2720. [CrossRef] [PubMed] [Google Scholar]
  56. Moog S, Lussey-Lepoutre C, Favier J. Epigenetic and metabolic reprogramming of SDH-deficient paragangliomas. Endocr Relat Cancer 2020; 27 : R451–63. [CrossRef] [PubMed] [Google Scholar]
  57. Buffet A, Ben Aim L, Leboulleux S, et al. Positive impact of genetic test on the management and outcome of patients with paraganglioma and/or pheochromocytoma. J Clin Endocrinol Metab 2019 ; 104 : 1109–1118. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.