Open Access
Issue |
Med Sci (Paris)
Volume 38, Number 1, Janvier 2022
|
|
---|---|---|
Page(s) | 89 - 95 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2021115 | |
Published online | 21 January 2022 |
- Boutin JA, Jockers R. Melatonin controversies, an update. J Pineal Res 2021; 70 : e12702. [CrossRef] [PubMed] [Google Scholar]
- Lerner AB, Case JD, Mori W, et al. Melatonin in peripheral nerve. Nature 1959 ; 183 : 1821. [CrossRef] [PubMed] [Google Scholar]
- Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 1960 ; 131 : 1312. [CrossRef] [PubMed] [Google Scholar]
- Lerner AB, Case JD, Takahishi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 1960 ; 235 : 1992–1997. [CrossRef] [PubMed] [Google Scholar]
- Weissbach H, Redfield BG, Axelrod J. Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin. Biochim Biophys Acta 1960 ; 43 : 352–353. [CrossRef] [PubMed] [Google Scholar]
- Armstrong SM. Melatonin and circadian control in mammals. Experientia 1989 ; 45 : 932–938. [CrossRef] [PubMed] [Google Scholar]
- Revel FG, Masson-Pévet M, Pévet P, et al. Melatonin controls seasonal breeding by a network of hypothalamic targets. Neuroendocrinology 2009 ; 90 : 1–14. [CrossRef] [PubMed] [Google Scholar]
- Klein DC. Arylalkylamine N-acetyltransferase: the Timezyme. J Biol Chem 2007 ; 282 : 4233–4237. [CrossRef] [PubMed] [Google Scholar]
- Lincoln GA, Andersson H, Hazlerigg D. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 2003 ; 15 : 390–397. [CrossRef] [PubMed] [Google Scholar]
- Oster H, Maronde E, Albrecht U. The circadian clock as a molecular calendar. Chronobiol Int 2002 ; 19 : 507–516. [CrossRef] [PubMed] [Google Scholar]
- Wan L, Shi XY, Ge WR, et al. The instigation of the associations between melatonin, circadian genes, and epileptic spasms in infant rats. Front Neurol 2020; 11 : 497225. [CrossRef] [PubMed] [Google Scholar]
- Benleulmi-Chaachoua A, Chen L, Sokolina K, et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016 ; 60 : 95–108. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Labani N, Cecon E, et al. Melatonin target proteins: too many or not enough?. Front Endocrinol (Lausanne) 2019 ; 10 : 791. [CrossRef] [PubMed] [Google Scholar]
- Salehi B, Sharopov F, Fokou PVT, et al. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells 2019 ; 8 : 681. [CrossRef] [Google Scholar]
- Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014 ; 66 : 24–35. [CrossRef] [PubMed] [Google Scholar]
- Forman HJ, Augusto O, Brigelius-Flohe R, et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med 2015 ; 78 : 233–235. [CrossRef] [PubMed] [Google Scholar]
- Brown GC. Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. J Theor Biol 1991 ; 153 : 195–203. [CrossRef] [PubMed] [Google Scholar]
- Favero G, Rodella LF, Nardo L, et al. A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells. Age (Dordr) 2015 ; 37 : 9824. [PubMed] [Google Scholar]
- Ferry G, Ubeaud C, Lambert P-H, et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2005 ; 388 : 205–215. [CrossRef] [PubMed] [Google Scholar]
- Stauch B, Johansson LC, Cherezov V. Structural insights into melatonin receptors. FEBS J 2020; 287 : 1496–510. [CrossRef] [PubMed] [Google Scholar]
- Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 2003 ; 306 : 954–964. [CrossRef] [PubMed] [Google Scholar]
- Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018 ; 391 : 1357–1366. [CrossRef] [PubMed] [Google Scholar]
- García IG, Rodriguez-Rubio M, Mariblanca AR, et al. A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID trial): a structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21 : 466. [CrossRef] [PubMed] [Google Scholar]
- Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250 : 117583. [CrossRef] [PubMed] [Google Scholar]
- Anderson G, Maes M, Markus RP, et al. Ebola virus: melatonin as a readily available treatment option. J Med Virol 2015 ; 87 : 537–543. [CrossRef] [PubMed] [Google Scholar]
- Tan D-X, Korkmaz A, Reiter RJ, et al. Ebola virus disease: potential use of melatonin as a treatment. J Pineal Res 2014 ; 57 : 381–384. [CrossRef] [PubMed] [Google Scholar]
- Lissoni P, Vigorè L, Rescaldani R, et al. Neuroimmunotherapy with low-dose subcutaneous interleukin-2 plus melatonin in AIDS patients with CD4 cell number below 200/mm3: a biological phase-II study. J Biol Regul Homeost Agents 1995 ; 9 : 155–158. [PubMed] [Google Scholar]
- Chiueh CC, Andoh T, Lai AR, et al. Neuroprotective strategies in Parkinson’s disease: protection against progressive nigral damage induced by free radicals. Neurotox Res 2000 ; 2 : 293–310. [CrossRef] [PubMed] [Google Scholar]
- Esteban-Zubero E, López-Pingarrón L, Alatorre-Jiménez MA, et al. Melatonin’s role as a co-adjuvant treatment in colonic diseases: a review. Life Sci 2017 ; 170 : 72–81. [CrossRef] [PubMed] [Google Scholar]
- Sánchez-Barceló EJ, Mediavilla MD, Tan DX, et al. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 2010 ; 17 : 2070–2095. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA. How can molecular pharmacology help understand the multiple actions of melatonin: 20 years of research and trends. In: Manuela Dra˘goi C, Crenguta Nicolae A, eds. Melatonin - molecular biology, clinical and pharmaceutical approaches. Londres : IntechOpen, 2018. https://www.intechopen.com/books/melatonin-molecular-biology-clinical-and-pharmaceutical-approaches/how-can-molecular-pharmacology-help-understand-the-multiple-actions-of-melatonin-20-years-of-research. [Google Scholar]
- Boutin JA. Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 2016 ; 20 : 303–317. [CrossRef] [PubMed] [Google Scholar]
- Kennaway DJ. A critical review of melatonin assays: past and present. J Pineal Res 2019 ; 67 : e12572. [CrossRef] [PubMed] [Google Scholar]
- Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69 : e12657. [CrossRef] [PubMed] [Google Scholar]
- Cecon E, Legros C, Boutin JA, et al. Journal of pineal research guideline for authors: defining and characterizing melatonin targets. J Pineal Res 2020 : e12712. [Google Scholar]
- Hazlerigg D, Blix AS, Stokkan KA. Waiting for the Sun: the circannual programme of reindeer is delayed by the recurrence of rhythmical melatonin secretion after the arctic night. J Exp Biol 2017 ; 220 : 3869–3872. [PubMed] [Google Scholar]
- Sáenz de Miera C, Monecke S, Bartzen-Sprauer J, et al. A circannual clock drives expression of genes central for seasonal reproduction. Curr Biol 2014 ; 24 : 1500–1506. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Audinot V, Ferry G, et al. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 2005 ; 26 : 412–419. [CrossRef] [PubMed] [Google Scholar]
- Jockers R, Delagrange P, Dubocovich ML, et al. Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 2016 ; 173 : 2702–2725. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Ferry G. Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2?. J Pharmacol Exp Ther 2019 ; 368 : 59–65. [CrossRef] [PubMed] [Google Scholar]
- Dubocovich ML, Hudson RL, Sumaya IC, et al. Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 2005 ; 39 : 113–120. [CrossRef] [PubMed] [Google Scholar]
- Sumaya IC, Masana MI, Dubocovich ML. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 2005 ; 39 : 170–177. [CrossRef] [PubMed] [Google Scholar]
- Kleber A, Altmeyer S, Wolf B, et al. Impact of melatonin receptor deletion on intracellular signaling in spleen cells of mice after polymicrobial sepsis. Inflamm Res 2014 ; 63 : 1023–1033. [CrossRef] [PubMed] [Google Scholar]
- Benoit C-E, Bastianetto S, Brouillette J, et al. Loss of quinone reductase 2 function selectively facilitates learning behaviors. J Neurosci 2010 ; 30 : 12690–12700. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Witt-Enderby PA, Sotriffer C, et al. Melatonin receptor ligands: a pharmaco-chemical perspective. J Pineal Res 2020; 69 : e12672. [CrossRef] [PubMed] [Google Scholar]
- Gautier C, Guenin SP, Riest-Fery I, et al. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus). PLoS One 2018 ; 13 : e0191904. [CrossRef] [PubMed] [Google Scholar]
- Stauch B, Johansson LC, McCorvy JD, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 2019 ; 569 : 284–288. [CrossRef] [PubMed] [Google Scholar]
- Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 2019 ; 569 : 289–292. [CrossRef] [PubMed] [Google Scholar]
- Stein RM, Kang HJ, McCorvy JD, et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020; 579 : 609–14. [CrossRef] [PubMed] [Google Scholar]
- Chan KH, Tse LH, Huang X, et al. Molecular basis defining the selectivity of substituted isoquinolinones for the melatonin MT2 receptor. Biochem Pharmacol 2020; 177 : 114020. [CrossRef] [PubMed] [Google Scholar]
- Janda E, Nepveu F, Calamini B, et al. Molecular pharmacology of NRH:quinone oxidoreductase 2: a detoxifying enzyme acting as an undercover toxifying enzyme. Mol Pharmacol 2020; 98 : 620–33. [CrossRef] [PubMed] [Google Scholar]
- Janda E, Lascala A, Carresi C, et al. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 2015 ; 11 : 1063–1080. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.