Open Access
Numéro |
Med Sci (Paris)
Volume 38, Numéro 1, Janvier 2022
|
|
---|---|---|
Page(s) | 89 - 95 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2021115 | |
Publié en ligne | 21 janvier 2022 |
- Boutin JA, Jockers R. Melatonin controversies, an update. J Pineal Res 2021; 70 : e12702. [CrossRef] [PubMed] [Google Scholar]
- Lerner AB, Case JD, Mori W, et al. Melatonin in peripheral nerve. Nature 1959 ; 183 : 1821. [CrossRef] [PubMed] [Google Scholar]
- Axelrod J, Weissbach H. Enzymatic O-methylation of N-acetylserotonin to melatonin. Science 1960 ; 131 : 1312. [CrossRef] [PubMed] [Google Scholar]
- Lerner AB, Case JD, Takahishi Y. Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J Biol Chem 1960 ; 235 : 1992–1997. [CrossRef] [PubMed] [Google Scholar]
- Weissbach H, Redfield BG, Axelrod J. Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin. Biochim Biophys Acta 1960 ; 43 : 352–353. [CrossRef] [PubMed] [Google Scholar]
- Armstrong SM. Melatonin and circadian control in mammals. Experientia 1989 ; 45 : 932–938. [CrossRef] [PubMed] [Google Scholar]
- Revel FG, Masson-Pévet M, Pévet P, et al. Melatonin controls seasonal breeding by a network of hypothalamic targets. Neuroendocrinology 2009 ; 90 : 1–14. [CrossRef] [PubMed] [Google Scholar]
- Klein DC. Arylalkylamine N-acetyltransferase: the Timezyme. J Biol Chem 2007 ; 282 : 4233–4237. [CrossRef] [PubMed] [Google Scholar]
- Lincoln GA, Andersson H, Hazlerigg D. Clock genes and the long-term regulation of prolactin secretion: evidence for a photoperiod/circannual timer in the pars tuberalis. J Neuroendocrinol 2003 ; 15 : 390–397. [CrossRef] [PubMed] [Google Scholar]
- Oster H, Maronde E, Albrecht U. The circadian clock as a molecular calendar. Chronobiol Int 2002 ; 19 : 507–516. [CrossRef] [PubMed] [Google Scholar]
- Wan L, Shi XY, Ge WR, et al. The instigation of the associations between melatonin, circadian genes, and epileptic spasms in infant rats. Front Neurol 2020; 11 : 497225. [CrossRef] [PubMed] [Google Scholar]
- Benleulmi-Chaachoua A, Chen L, Sokolina K, et al. Protein interactome mining defines melatonin MT1 receptors as integral component of presynaptic protein complexes of neurons. J Pineal Res 2016 ; 60 : 95–108. [CrossRef] [PubMed] [Google Scholar]
- Liu L, Labani N, Cecon E, et al. Melatonin target proteins: too many or not enough?. Front Endocrinol (Lausanne) 2019 ; 10 : 791. [CrossRef] [PubMed] [Google Scholar]
- Salehi B, Sharopov F, Fokou PVT, et al. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells 2019 ; 8 : 681. [CrossRef] [Google Scholar]
- Forman HJ, Davies KJA, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med 2014 ; 66 : 24–35. [CrossRef] [PubMed] [Google Scholar]
- Forman HJ, Augusto O, Brigelius-Flohe R, et al. Even free radicals should follow some rules: a guide to free radical research terminology and methodology. Free Radic Biol Med 2015 ; 78 : 233–235. [CrossRef] [PubMed] [Google Scholar]
- Brown GC. Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. J Theor Biol 1991 ; 153 : 195–203. [CrossRef] [PubMed] [Google Scholar]
- Favero G, Rodella LF, Nardo L, et al. A comparison of melatonin and α-lipoic acid in the induction of antioxidant defences in L6 rat skeletal muscle cells. Age (Dordr) 2015 ; 37 : 9824. [PubMed] [Google Scholar]
- Ferry G, Ubeaud C, Lambert P-H, et al. Molecular evidence that melatonin is enzymatically oxidized in a different manner than tryptophan: investigations with both indoleamine 2,3-dioxygenase and myeloperoxidase. Biochem J 2005 ; 388 : 205–215. [CrossRef] [PubMed] [Google Scholar]
- Stauch B, Johansson LC, Cherezov V. Structural insights into melatonin receptors. FEBS J 2020; 287 : 1496–510. [CrossRef] [PubMed] [Google Scholar]
- Millan MJ, Gobert A, Lejeune F, et al. The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J Pharmacol Exp Ther 2003 ; 306 : 954–964. [CrossRef] [PubMed] [Google Scholar]
- Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet 2018 ; 391 : 1357–1366. [CrossRef] [PubMed] [Google Scholar]
- García IG, Rodriguez-Rubio M, Mariblanca AR, et al. A randomized multicenter clinical trial to evaluate the efficacy of melatonin in the prophylaxis of SARS-CoV-2 infection in high-risk contacts (MeCOVID trial): a structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21 : 466. [CrossRef] [PubMed] [Google Scholar]
- Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250 : 117583. [CrossRef] [PubMed] [Google Scholar]
- Anderson G, Maes M, Markus RP, et al. Ebola virus: melatonin as a readily available treatment option. J Med Virol 2015 ; 87 : 537–543. [CrossRef] [PubMed] [Google Scholar]
- Tan D-X, Korkmaz A, Reiter RJ, et al. Ebola virus disease: potential use of melatonin as a treatment. J Pineal Res 2014 ; 57 : 381–384. [CrossRef] [PubMed] [Google Scholar]
- Lissoni P, Vigorè L, Rescaldani R, et al. Neuroimmunotherapy with low-dose subcutaneous interleukin-2 plus melatonin in AIDS patients with CD4 cell number below 200/mm3: a biological phase-II study. J Biol Regul Homeost Agents 1995 ; 9 : 155–158. [PubMed] [Google Scholar]
- Chiueh CC, Andoh T, Lai AR, et al. Neuroprotective strategies in Parkinson’s disease: protection against progressive nigral damage induced by free radicals. Neurotox Res 2000 ; 2 : 293–310. [CrossRef] [PubMed] [Google Scholar]
- Esteban-Zubero E, López-Pingarrón L, Alatorre-Jiménez MA, et al. Melatonin’s role as a co-adjuvant treatment in colonic diseases: a review. Life Sci 2017 ; 170 : 72–81. [CrossRef] [PubMed] [Google Scholar]
- Sánchez-Barceló EJ, Mediavilla MD, Tan DX, et al. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 2010 ; 17 : 2070–2095. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA. How can molecular pharmacology help understand the multiple actions of melatonin: 20 years of research and trends. In: Manuela Dra˘goi C, Crenguta Nicolae A, eds. Melatonin - molecular biology, clinical and pharmaceutical approaches. Londres : IntechOpen, 2018. https://www.intechopen.com/books/melatonin-molecular-biology-clinical-and-pharmaceutical-approaches/how-can-molecular-pharmacology-help-understand-the-multiple-actions-of-melatonin-20-years-of-research. [Google Scholar]
- Boutin JA. Quinone reductase 2 as a promising target of melatonin therapeutic actions. Expert Opin Ther Targets 2016 ; 20 : 303–317. [CrossRef] [PubMed] [Google Scholar]
- Kennaway DJ. A critical review of melatonin assays: past and present. J Pineal Res 2019 ; 67 : e12572. [CrossRef] [PubMed] [Google Scholar]
- Kennaway DJ. Measuring melatonin by immunoassay. J Pineal Res 2020; 69 : e12657. [CrossRef] [PubMed] [Google Scholar]
- Cecon E, Legros C, Boutin JA, et al. Journal of pineal research guideline for authors: defining and characterizing melatonin targets. J Pineal Res 2020 : e12712. [Google Scholar]
- Hazlerigg D, Blix AS, Stokkan KA. Waiting for the Sun: the circannual programme of reindeer is delayed by the recurrence of rhythmical melatonin secretion after the arctic night. J Exp Biol 2017 ; 220 : 3869–3872. [PubMed] [Google Scholar]
- Sáenz de Miera C, Monecke S, Bartzen-Sprauer J, et al. A circannual clock drives expression of genes central for seasonal reproduction. Curr Biol 2014 ; 24 : 1500–1506. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Audinot V, Ferry G, et al. Molecular tools to study melatonin pathways and actions. Trends Pharmacol Sci 2005 ; 26 : 412–419. [CrossRef] [PubMed] [Google Scholar]
- Jockers R, Delagrange P, Dubocovich ML, et al. Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol 2016 ; 173 : 2702–2725. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Ferry G. Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2?. J Pharmacol Exp Ther 2019 ; 368 : 59–65. [CrossRef] [PubMed] [Google Scholar]
- Dubocovich ML, Hudson RL, Sumaya IC, et al. Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res 2005 ; 39 : 113–120. [CrossRef] [PubMed] [Google Scholar]
- Sumaya IC, Masana MI, Dubocovich ML. The antidepressant-like effect of the melatonin receptor ligand luzindole in mice during forced swimming requires expression of MT2 but not MT1 melatonin receptors. J Pineal Res 2005 ; 39 : 170–177. [CrossRef] [PubMed] [Google Scholar]
- Kleber A, Altmeyer S, Wolf B, et al. Impact of melatonin receptor deletion on intracellular signaling in spleen cells of mice after polymicrobial sepsis. Inflamm Res 2014 ; 63 : 1023–1033. [CrossRef] [PubMed] [Google Scholar]
- Benoit C-E, Bastianetto S, Brouillette J, et al. Loss of quinone reductase 2 function selectively facilitates learning behaviors. J Neurosci 2010 ; 30 : 12690–12700. [CrossRef] [PubMed] [Google Scholar]
- Boutin JA, Witt-Enderby PA, Sotriffer C, et al. Melatonin receptor ligands: a pharmaco-chemical perspective. J Pineal Res 2020; 69 : e12672. [CrossRef] [PubMed] [Google Scholar]
- Gautier C, Guenin SP, Riest-Fery I, et al. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus). PLoS One 2018 ; 13 : e0191904. [CrossRef] [PubMed] [Google Scholar]
- Stauch B, Johansson LC, McCorvy JD, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor. Nature 2019 ; 569 : 284–288. [CrossRef] [PubMed] [Google Scholar]
- Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity. Nature 2019 ; 569 : 289–292. [CrossRef] [PubMed] [Google Scholar]
- Stein RM, Kang HJ, McCorvy JD, et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020; 579 : 609–14. [CrossRef] [PubMed] [Google Scholar]
- Chan KH, Tse LH, Huang X, et al. Molecular basis defining the selectivity of substituted isoquinolinones for the melatonin MT2 receptor. Biochem Pharmacol 2020; 177 : 114020. [CrossRef] [PubMed] [Google Scholar]
- Janda E, Nepveu F, Calamini B, et al. Molecular pharmacology of NRH:quinone oxidoreductase 2: a detoxifying enzyme acting as an undercover toxifying enzyme. Mol Pharmacol 2020; 98 : 620–33. [CrossRef] [PubMed] [Google Scholar]
- Janda E, Lascala A, Carresi C, et al. Parkinsonian toxin-induced oxidative stress inhibits basal autophagy in astrocytes via NQO2/quinone oxidoreductase 2: Implications for neuroprotection. Autophagy 2015 ; 11 : 1063–1080. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.