Open Access
Issue
Med Sci (Paris)
Volume 37, Number 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1133 - 1138
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021205
Published online 20 December 2021
  1. Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci USA 2019 ; 116 : 16086–16094. [Google Scholar]
  2. Wang S, Cesca F, Loers G, et al. Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes. J Neurosci 2011 ; 31 : 7275–7290. [Google Scholar]
  3. Chaudhuri AD, Dasgheyb RM, DeVine LR, et al. Stimulus-dependent modifications in astrocyte-derived extracellular VEicle cargo regulate neuronal excitability. Glia 2020; 68 : 128–44. [Google Scholar]
  4. Lemaire Q, Raffo-Romero A, Arab T, et al. Isolation of microglia-derived extracellular Vesicles: towards miRNA signatures and neuroprotection. J Nanobiotechnol 2019 ; 17 : 119. [Google Scholar]
  5. Chivet M, Javalet C, Laulagnier K, et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles 2014 ; 3 : 24722. [Google Scholar]
  6. Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 2006 ; 31 : 642–648. [Google Scholar]
  7. Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci 2011 ; 46 : 409–418. [Google Scholar]
  8. Antonucci F, Turola E, Riganti L, et al. MicroVesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism: Microglial MVs increase sphingolipid metabolism in neurons. EMBO J 2012 ; 31 : 1231–1240. [Google Scholar]
  9. Gabrielli M, Battista N, Riganti L, et al. Active endocannabinoids are secreted on extracellular membrane Vesicles. EMBO Rep 2015 ; 16 : 213–220. [Google Scholar]
  10. Holm MM, Kaiser J, Schwab MEExtracellular Vesicles: Multimodal Envoys in Neural Maintenance and Repair. Trends Neurosci 2018 ; 41 : 360–372. [Google Scholar]
  11. Korkut C, Li Y, Koles K, et al. Regulation of Postsynaptic Retrograde Signaling by Presynaptic Exosome Release. Neuron 2013 ; 77 : 1039–1046. [Google Scholar]
  12. Bahrini I, Song J, Diez D, et al. Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep 2015 ; 5 : 7989. [Google Scholar]
  13. Chivet M, Javalet C, Hemming F, et al. Exosomes as a novel way of interneuronal communication. Biochem Soc Trans 2013 ; 41 : 241–244. [Google Scholar]
  14. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007 ; 9 : 654–659. [Google Scholar]
  15. Goldie BJ, Dun MD, Lin M, et al. Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res 2014 ; 42 : 9195–9208. [Google Scholar]
  16. Bakhti M, Winter C, Simons MInhibition of Myelin Membrane Sheath Formation by Oligodendrocyte-derived Exosome-like Vesicles. J Biol Chemstry 2011 ; 286 : 787–796. [Google Scholar]
  17. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligodendrocyte-Neuron Communication. PLoS Biol 2013 ; 11 : e1001604. [Google Scholar]
  18. Krämer-Albers E-M, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons?. Prot Clin Appl 2007 ; 1 : 1446–1461. [Google Scholar]
  19. Prusiner SBNovel proteinaceous infectious particles cause scrapie. Science 1982 ; 216 : 136–144. [Google Scholar]
  20. Fevrier B, Vilette D, Archer F, et al. Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 2004 ; 101 : 9683–9688. [Google Scholar]
  21. Guo BB, Bellingham SA, Hill AFStimulating the Release of Exosomes Increases the Intercellular Transfer of Prions. J Biol Chem 2016 ; 291 : 5128–5137. [Google Scholar]
  22. Vella LJ, Sharples RA, Lawson VA, et al. Packaging of prions into exosomes is associated with a novel pathway of PrP processing. J Pathol 2007 ; 211 : 582–590. [Google Scholar]
  23. Ma J, Gao J, Wang J, et al. Prion-Like Mechanisms in Parkinson’s Disease. Fron. Neurosci 2019 ; 13 : 552. [Google Scholar]
  24. McAlary L, Plotkin SS, Yerbury JJ, et al. Prion-Like Propagation of Protein Misfolding and Aggregation in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2019 ; 12 : 262. [Google Scholar]
  25. Colin M, Dujardin S, Schraen-Maschke S, et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol 2020; 139 : 3–25. [Google Scholar]
  26. Pérez M, Avila J, Hernández FPropagation of Tau via Extracellular Vesicles. Front Neurosci 2019 ; 13 : 698. [Google Scholar]
  27. Polanco JC, Scicluna BJ, Hill AF, et al. Extracellular vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner. J Biol Chem 2016 ; 291 : 12445–12466. [Google Scholar]
  28. Ruan Z, Pathak D, Venkatesan Kalavai S, et al. Alzheimer’s disease brain-derived extracellular vesicles spread tau pathology in interneurons. Brain 2021; 144 : 288–309. [Google Scholar]
  29. Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015 ; 18 : 1584–1593. [Google Scholar]
  30. Sardar Sinha M, Ansell-Schultz A, Civitelli L, et al. Alzheimer’s disease pathology propagation by exosomes containing toxic amyloid-beta oligomers. Acta Neuropathol 2018; 136 : 41–56. [Google Scholar]
  31. Dinkins MB, Enasko J, Hernandez C, et al. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer’s Disease Pathology and ImproVE Cognition in the 5XFAD Mouse. J Neurosci 2016 ; 36 : 8653–8667. [Google Scholar]
  32. Yuyama K, Sun H, Mitsutake S, et al. Sphingolipid-modulated Exosome Secretion Promotes Clearance of Amyloid-β by Microglia. J Biol Chem 2012 ; 287 : 10977–10989. [Google Scholar]
  33. An K, Klyubin I, Kim Y, et al. Exosomes neutralize synaptic-plasticity-disrupting activity of Aβ assemblies in vivo. Mol Brain 2013 ; 6 : 47. [Google Scholar]
  34. Gámez-Valero A, Beyer K, Borràs FEExtracellular Vesicles, new actors in the search for biomarkers of dementias. Neurobiol Aging 2019 ; 74 : 15–20. [Google Scholar]
  35. Benjamins JA, Nedelkoska L, Touil H, et al. Exosome-enriched fractions from MS B cells induce oligodendrocyte death. Neurol Neuroimmunol Neuroinflamm 2019 ; 6 : e550. [Google Scholar]
  36. Paul D, Baena V, Ge S, et al. Appearance of claudin-5+ leukocytes in the central nervous system during neuroinflammation: a novel role for endothelial-derived extracellular Vesicles. J Neuroinflammation 2016 ; 13 : 292. [Google Scholar]
  37. Sáenz-Cuesta M, Osorio-Querejeta I, Otaegui DExtracellular Vesicles in Multiple Sclerosis: What are They Telling Us?. Front Cell Neurosci 2014 ; 8 : 100. [Google Scholar]
  38. Bianco F, Pravettoni E, Colombo A, et al. Astrocyte-Derived ATP Induces VEicle Shedding and IL-1β Release from Microglia. J Immunol 2005 ; 174 : 7268–7277. [Google Scholar]
  39. Zrzavy T, Hametner S, Wimmer I, et al. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 2017 ; 140 : 1900–1913. [Google Scholar]
  40. Prada I, Gabrielli M, Turola E, et al. Glia-to-neuron transfer of miRNAs via extracellular Vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018 ; 135 : 529–550. [Google Scholar]
  41. Casella G, Colombo F, Finardi A, et al. Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Mol Ther 2018 ; 26 : 2107–2118. [Google Scholar]
  42. Williams JL, Gatson NN, Smith KM, et al. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin Immunoly 2013 ; 149 : 236–243. [Google Scholar]
  43. D’Asti E, Garnier D, Lee TH, et al. Oncogenic extracellular Vesicles in brain tumor progression. Front Physiol 2012 ; 3 : 294. [Google Scholar]
  44. Hallal S, Mallawaaratchy DM, Wei H, et al. Extracellular Vesicles Released by Glioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways. Mol Neurobiol 2019 ; 56 : 4566–4581. [Google Scholar]
  45. Oushy S, Hellwinkel JE, Wang M, et al. Glioblastoma multiforme-derived extracellular Vesicles drive normal astrocytes towards a tumour-enhancing phenotype. Philos Trans R Soc Lond B Biol Sci 2018 ; 373 : 20160477. [Google Scholar]
  46. Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes Derived from Hypoxic Leukemia Cells Enhance Tube Formation in Endothelial Cells. J Biol Chem 2013 ; 288 : 34343–34351. [Google Scholar]
  47. Jaiswal R, Sedger LMIntercellular VEicular Transfer by Exosomes, Microparticles and Oncosomes- Implications for Cancer Biology and Treatments. Front Oncol 2019 ; 9 : 125. [Google Scholar]
  48. Skog J, Wurdinger T, van Rijn S, et al. Glioblastoma microVesicles transport RNA and protein that promote tumor growth and provide diagnostic biomarkers. Nat Cell Biol 2008 ; 10 : 1470–1476. [Google Scholar]
  49. Yin J, Zeng A, Zhang Z, et al. Exosomal transfer of miR-1238 contributes to temozolomide-resistance in glioblastoma. EBioMedicine 2019 ; 42 : 238–251. [Google Scholar]
  50. Murgoci A-N, Cizkova D, Majerova P, et al. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. ChemPhysChem 2018 ; 19 : 1205–1214. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.