Open Access
Issue
Med Sci (Paris)
Volume 37, Number 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1139 - 1145
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021206
Published online 20 December 2021
  1. Burnet FM. Cellular Immunology: Self and Not-self, Cambridge: Cambridge University Press, 1969. [Google Scholar]
  2. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994 ; 12 : 991–1045. [CrossRef] [PubMed] [Google Scholar]
  3. Pradeu T. Immunology and individuality. Elife 2019 ; 8. [Google Scholar]
  4. Srinivasan S, Vannberg FO, Dixon JB. Lymphatic transport of exosomes as a rapid route of information dissemination to the lymph node. Sci Rep 2016 ; 6 : 24436. [CrossRef] [PubMed] [Google Scholar]
  5. Atkin-Smith GK, Poon IKH. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol 2017 ; 27 : 151–162. [CrossRef] [PubMed] [Google Scholar]
  6. Gómez-Molina C, Sandoval M, Henzi R, et al. Small Extracellular Vesicles in Rat Serum Contain Astrocyte-Derived Protein Biomarkers of Repetitive Stress. Int J Neuropsychopharmacol 2019 ; 22 : 232–246. [CrossRef] [PubMed] [Google Scholar]
  7. Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther 2011 ; 19 : 1769–1779. [CrossRef] [Google Scholar]
  8. Parish IA, Heath WR. Too dangerous to ignore: self-tolerance and the control of ignorant autoreactive T cells. Immunol Cell Biol 2008 ; 86 : 146–152. [CrossRef] [PubMed] [Google Scholar]
  9. Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996 ; 183 : 1161–1172. [CrossRef] [PubMed] [Google Scholar]
  10. Théry C, Duban L, Segura E, et al. Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 2002 ; 3 : 1156–1162. [CrossRef] [PubMed] [Google Scholar]
  11. Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998 ; 4 : 594–600. [CrossRef] [PubMed] [Google Scholar]
  12. Besse B, Charrier M, Lapierre V, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 2016 ; 5 : e1071008. [CrossRef] [PubMed] [Google Scholar]
  13. Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 2005 ; 3 : 10. [CrossRef] [PubMed] [Google Scholar]
  14. Bhatnagar S, Shinagawa K, Castellino FJ, et al. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 2007 ; 110 : 3234–3244. [CrossRef] [PubMed] [Google Scholar]
  15. Giri PK, Schorey JS. Exosomes Derived from M. Bovis BCG Infected Macrophages Activate Antigen-Specific CD4+ and CD8+ T Cells In Vitro and In Vivo. PLoS ONE 2008 ; 3 : e2461. [CrossRef] [PubMed] [Google Scholar]
  16. de Heusch M, Blocklet D, Egrise D, et al. Bidirectional MHC molecule exchange between migratory and resident dendritic cells. J Leukoc Biol 2007 ; 82 : 861–868. [CrossRef] [PubMed] [Google Scholar]
  17. Montecalvo A, Shufesky WJ, Beer Stolz D, et al. Exosomes As a Short-Range Mechanism to Spread Alloantigen between Dendritic Cells during T Cell Allorecognition. J Immunol 2008 ; 180 : 3081–3090. [CrossRef] [PubMed] [Google Scholar]
  18. Mallegol J, Van Niel G, Lebreton C, et al. T84-Intestinal Epithelial Exosomes Bear MHC Class II/Peptide Complexes Potentiating Antigen Presentation by Dendritic Cells. Gastroenterology 2007 ; 132 : 1866–1876. [CrossRef] [PubMed] [Google Scholar]
  19. Segura E, Guérin C, Hogg N, et al. CD8 + Dendritic Cells Use LFA-1 to Capture MHC-Peptide Complexes from Exosomes In Vivo. J Immunol 2007 ; 179 : 1489–1496. [CrossRef] [PubMed] [Google Scholar]
  20. Liu Q, Rojas-Canales DM, Divito SJ, et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest 2016 ; 126 : 2805–2820. [CrossRef] [PubMed] [Google Scholar]
  21. Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol 2016; 1. [Google Scholar]
  22. Mastoridis S, Londoño M-C, Kurt A, et al. Impact of donor extracellular vesicle release on recipient cell “cross-dressing” following clinical liver and kidney transplantation. Am J Transplant 2021; 21 : 2387–98. [CrossRef] [PubMed] [Google Scholar]
  23. Nolte-‘t Hoen ENM, Buschow SI, Anderton SM, et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 2009; 113 : 1977–81. [CrossRef] [PubMed] [Google Scholar]
  24. Muntasell A, Berger AC, Roche PA. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J 2007 ; 26 : 4263–4272. [CrossRef] [PubMed] [Google Scholar]
  25. Fitzgerald W, Freeman ML, Lederman MM, et al. A System of Cytokines Encapsulated in ExtraCellular Vesicles. Sci Rep 2018 ; 8 : 8973. [CrossRef] [PubMed] [Google Scholar]
  26. Segura E, Amigorena S, Théry C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells. Mol Dis 2005 ; 35 : 89–93. [CrossRef] [Google Scholar]
  27. Dubrot J, Duraes FV, Potin L, et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4+ T cell tolerance. J Exp Med 2014 ; 211 : 1153–1166. [CrossRef] [PubMed] [Google Scholar]
  28. Pasztoi M, Pezoldt J, Beckstette M, et al. Mesenteric lymph node stromal cell-derived extracellular vesicles contribute to peripheral de novo induction of Foxp3 + regulatory T cells. Eur J Immunol 2017 ; 47 : 2142–2152. [CrossRef] [PubMed] [Google Scholar]
  29. Ono Y, Perez-Gutierrez A, Nakao T, et al. Graft-infiltrating PD-L1hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance. Hepatol 2018 ; 67 : 1499–1515. [CrossRef] [Google Scholar]
  30. Yu X, Huang C, Song B, et al. CD4+CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model. Cell Immunol 2013 ; 285 : 62–68. [CrossRef] [PubMed] [Google Scholar]
  31. Elfeky O, Longo S, Lai A, et al. Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta 2017 ; 50 : 60–69. [CrossRef] [PubMed] [Google Scholar]
  32. Nguyen SL, Ahn SH, Greenberg JW, et al. Integrins mediate placental extracellular vesicle trafficking to lung and liver in vivo. Sci Rep 2021; 11 : 4217. [CrossRef] [PubMed] [Google Scholar]
  33. Bai K, Li X, Zhong J, et al. Placenta-Derived Exosomes as a Modulator in Maternal Immune Tolerance During Pregnancy. Front Immunol 2021; 12 : 671093. [CrossRef] [PubMed] [Google Scholar]
  34. Pallinger E, Bognar Z, Bogdan A, et al. PIBF+ extracellular vesicles from mouse embryos affect IL-10 production by CD8+ cells. Sci Rep 2018 ; 8 : 4662. [CrossRef] [PubMed] [Google Scholar]
  35. Stenqvist A-C, Nagaeva O, Baranov V, et al. Exosomes secreted by human placenta carry functional Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol 2013 ; 191 : 5515–5523. [CrossRef] [PubMed] [Google Scholar]
  36. Hedlund M, Stenqvist A-C, Nagaeva O, et al. Human placenta expresses and secretes NKG2D ligands via exosomes that down-modulate the cognate receptor expression: evidence for immunosuppressive function. J Immunol 2009 ; 183 : 340–351. [CrossRef] [PubMed] [Google Scholar]
  37. Gutierrez-Franco J, Hernandez-Gutierrez R, Bueno-Topete MR, et al. Characterization of B7H6, an endogenous ligand for the NK cell activating receptor NKp30, reveals the identity of two different soluble isoforms during normal human pregnancy. Immunobiology 2018 ; 223 : 57–63. [CrossRef] [PubMed] [Google Scholar]
  38. Kuipers ME, Hokke CH, Smits HH, et al. Pathogen-Derived Extracellular Vesicle-Associated Molecules That Affect the Host Immune System: An Overview. Front Microbiol 2018 ; 9 : 2182. [CrossRef] [PubMed] [Google Scholar]
  39. Liao Y, Du X, Li J, et al. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res 2017 ; 61 : 1700082. [CrossRef] [Google Scholar]
  40. Macia L, Nanan R, Hosseini-Beheshti E, et al. Host- and Microbiota-Derived Extracellular Vesicles, Immune Function, and Disease Development. Int J Mol Sci 2019 ; 21 : E107. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.