Open Access
Issue
Med Sci (Paris)
Volume 37, Number 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1108 - 1115
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021210
Published online 20 December 2021
  1. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : 213–228. [Google Scholar]
  2. Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front Neurol 2020; 11 : 580030. [Google Scholar]
  3. Hoshino A, Kim HS, Bojmar L, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020; 182 : 1044–61.e18. [Google Scholar]
  4. Yáñez-Mó M, Siljander PRM, Andreu Zet al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015 ; 4 : 1–60. [Google Scholar]
  5. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367 [Google Scholar]
  6. Fais S, O’Driscoll L, Borras FEet al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 2016 ; 10 : 3886–3899. [Google Scholar]
  7. Verweij FJ, Balaj L, Boulanger CM, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 2021 : 1–14. [Google Scholar]
  8. Gangadaran P, Hong CM, Ahn BC. Current Perspectives on in Vivo Noninvasive Tracking of Extracellular Vesicles with Molecular Imaging. Biomed Res Int 2017; 2017. [Google Scholar]
  9. Betzer O, Barnoy E, Sadan T, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 2020; 12 : e1594. [Google Scholar]
  10. Yi YW, Lee JH, Kim SY, et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020; 21. [Google Scholar]
  11. Verweij FJ, Balaj L, Boulanger C, et al. The power of imaging to understand Extracellular Vesicle biology. Nat Protoc 2021. https://doi.org/10.1038/s41592-021-01206-3. [Google Scholar]
  12. Lázaro-Ibánez E, Al-Jamal KT, Dekker N, et al. Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo. ACS Nano 2021; 15 : 3212–27. [Google Scholar]
  13. Varga Z, Gyurkó I, Pálóczi Ket al. Radiolabeling of Extracellular Vesicles with 99mTc for Quantitative in Vivo Imaging Studies. Cancer Biother Radiopharm 2016 ; 31 : 168–173. [Google Scholar]
  14. Gangadaran P, Hong CM, Oh JM, et al. In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. Front Pharmacol 2018; 9. [Google Scholar]
  15. Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med 2015 ; 74 : 266–271. [Google Scholar]
  16. Busato A, Bonafede R, Bontempi Pet al. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: A new method to obtain labeled exosomes. Int J Nanomedicine 2016 ; 11 : 2481–2490. [Google Scholar]
  17. Jc Bose R, Uday Kumar S, Zeng Y, et al. Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano 2018; 12 : 10817–32. [Google Scholar]
  18. Tian Y, Li S, Song Jet al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014 ; 35 : 2383–2390. [Google Scholar]
  19. Smyth T, Kullberg M, Malik Net al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 2015 ; 199 : 145–155. [Google Scholar]
  20. Hoshino A, Costa-Silva B, Shen TLet al. Tumour exosome integrins determine organotropic metastasis. Nature 2015 ; 527 : 329–335. [Google Scholar]
  21. Wiklander OPB, Nordin JZ, O’Loughlin Aet al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015 ; 4 : 1–13. [Google Scholar]
  22. Pužar Dominkuš P, Stenovec M, Sitar S, et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta - Biomembr 2018; 1860 : 1350–61. [Google Scholar]
  23. Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: Current and emerging methods. J Biomed Sci 2018 ; 25 : 1–10. [Google Scholar]
  24. Kang M, Jordan V, Blenkiron C, et al. Biodistribution of extracellular vesicles following administration into animals: A systematic review. J Extracell Vesicles 2021; 10. [Google Scholar]
  25. Zomer A, Maynard C, Verweij FJet al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 2015 ; 161 : 1046–1057. [Google Scholar]
  26. Lai CP, Kim EY, Badr CEet al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015 ; 6 : 1–12. [Google Scholar]
  27. Frederik Verweij AJ, Revenu C, Arras Get al. Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Dev Cell 2019 ; 48 : 573–89e4. [Google Scholar]
  28. Hyenne V, Ghoroghi S, Collot Met al. Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev Cell 2019 ; 48 : 554–72 e7. [Google Scholar]
  29. Luo W, Dai Y, Chen Z, et al. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun Biol 2020; 3 : 1–9. [Google Scholar]
  30. Takahashi Y, Nishikawa M, Shinotsuka Het al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 2013 ; 165 : 77–84. [Google Scholar]
  31. Lai CP, Mardini O, Ericsson Met al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014 ; 8 : 483–494. [Google Scholar]
  32. Kanada M, Bachmann MH, Hardy JWet al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 2015 ; 112 : E1433–E1442. [Google Scholar]
  33. Gangadaran P, Li XJ, Lee HWet al. A new Bioluminescent reporter system to study the Biodistribution of systematically injected tumor-derived Bioluminescent extracellular Vesicles in mice. Oncotarget 2017 ; 8 : 109894–109914. [Google Scholar]
  34. Wu AYT, Sung YC, Chen YJ, et al. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Adv Sci 2020; 7 : 2001467. [Google Scholar]
  35. Beer KB, Wehman AM. Mechanisms and functions of extracellular vesicle release in vivo – What we can learn from flies and worms. Cell Adhes Migr 2017 ; 11 : 135–150. [Google Scholar]
  36. Androuin A, Verweij FJ, Niel G van. Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development. Adv Drug Deliv Rev 2021. [Google Scholar]
  37. Fan S, Kroeger B, Marie PP, et al. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J 2020; 39 : e103009. [Google Scholar]
  38. Yang T, Martin P, Fogarty Bet al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm Res 2015 ; 32 : 2003–2014. [Google Scholar]
  39. Ridder K, Sevko A, Heide Jet al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 2015 ; 4 : 1–8. [Google Scholar]
  40. Thomou T, Mori MA, Dreyfuss JMet al. Adipose-Derived Circulating miRNAs Regulate Gene Expression in Other Tissues. Nature 2017 ; 542 : 450–455. [Google Scholar]
  41. Sterzenbach U, Putz U, Low LHet al. Engineered Exosomes as Vehicles for Biologically Active Proteins. Mol Ther. 2017 ; 25 : 1269–1278. [Google Scholar]
  42. Bonsergent E, Grisard E, Buchrieser J, et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat Commun 2021; 12 : 1–11. [Google Scholar]
  43. Coatrieux JL, Velut J, Dillenseger JL, Toumoulin C. De l’imagerie médicale à la thérapie guidée par l’image - Représentation en sciences du vivant (3). Med Sci (Paris) 2010 ; 26 : 1103–1109. [Google Scholar]
  44. Jullien L, Gautier A. Des sondes fluorescentes hybrides pour l’imagerie « à la demande » des protéines cellulaires. Med Sci (Paris) 2017 ; 33 : 576–578. [Google Scholar]
  45. Follain G, Gensbittel V, Benjmin Mary B, et al. Influence de la mécanique des fluides sur la formation des métastases. Med Sci (Paris) 2020; 36 : 872–8. [Google Scholar]
  46. Ghossoub R, Leblanc R, David G, Zimmermann P. Tétraspanines et syndécans : complices dans le « trafic » des exosomes ? Med Sci (Paris) 2021; 37 : 1101–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.