Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 12, Décembre 2021
Vésicules extracellulaires
Page(s) 1108 - 1115
Section Vésicules extracellulaires
DOI https://doi.org/10.1051/medsci/2021210
Publié en ligne 20 décembre 2021
  1. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018 ; 19 : 213–228. [CrossRef] [PubMed] [Google Scholar]
  2. Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the Proteomic Profiling of Extracellular Vesicles for the Identification of Early Biomarkers of Neurodegeneration. Front Neurol 2020; 11 : 580030. [CrossRef] [PubMed] [Google Scholar]
  3. Hoshino A, Kim HS, Bojmar L, et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell 2020; 182 : 1044–61.e18. [CrossRef] [PubMed] [Google Scholar]
  4. Yáñez-Mó M, Siljander PRM, Andreu Zet al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015 ; 4 : 1–60. [Google Scholar]
  5. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367 [Google Scholar]
  6. Fais S, O’Driscoll L, Borras FEet al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 2016 ; 10 : 3886–3899. [CrossRef] [PubMed] [Google Scholar]
  7. Verweij FJ, Balaj L, Boulanger CM, et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 2021 : 1–14. [Google Scholar]
  8. Gangadaran P, Hong CM, Ahn BC. Current Perspectives on in Vivo Noninvasive Tracking of Extracellular Vesicles with Molecular Imaging. Biomed Res Int 2017; 2017. [Google Scholar]
  9. Betzer O, Barnoy E, Sadan T, et al. Advances in imaging strategies for in vivo tracking of exosomes. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 2020; 12 : e1594. [CrossRef] [PubMed] [Google Scholar]
  10. Yi YW, Lee JH, Kim SY, et al. Advances in analysis of biodistribution of exosomes by molecular imaging. Int J Mol Sci. 2020; 21. [Google Scholar]
  11. Verweij FJ, Balaj L, Boulanger C, et al. The power of imaging to understand Extracellular Vesicle biology. Nat Protoc 2021. https://doi.org/10.1038/s41592-021-01206-3. [Google Scholar]
  12. Lázaro-Ibánez E, Al-Jamal KT, Dekker N, et al. Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo. ACS Nano 2021; 15 : 3212–27. [CrossRef] [PubMed] [Google Scholar]
  13. Varga Z, Gyurkó I, Pálóczi Ket al. Radiolabeling of Extracellular Vesicles with 99mTc for Quantitative in Vivo Imaging Studies. Cancer Biother Radiopharm 2016 ; 31 : 168–173. [CrossRef] [PubMed] [Google Scholar]
  14. Gangadaran P, Hong CM, Oh JM, et al. In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. Front Pharmacol 2018; 9. [PubMed] [Google Scholar]
  15. Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes. Magn Reson Med 2015 ; 74 : 266–271. [CrossRef] [PubMed] [Google Scholar]
  16. Busato A, Bonafede R, Bontempi Pet al. Magnetic resonance imaging of ultrasmall superparamagnetic iron oxide-labeled exosomes from stem cells: A new method to obtain labeled exosomes. Int J Nanomedicine 2016 ; 11 : 2481–2490. [PubMed] [Google Scholar]
  17. Jc Bose R, Uday Kumar S, Zeng Y, et al. Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents. ACS Nano 2018; 12 : 10817–32. [CrossRef] [PubMed] [Google Scholar]
  18. Tian Y, Li S, Song Jet al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014 ; 35 : 2383–2390. [CrossRef] [PubMed] [Google Scholar]
  19. Smyth T, Kullberg M, Malik Net al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J Control Release 2015 ; 199 : 145–155. [CrossRef] [PubMed] [Google Scholar]
  20. Hoshino A, Costa-Silva B, Shen TLet al. Tumour exosome integrins determine organotropic metastasis. Nature 2015 ; 527 : 329–335. [CrossRef] [PubMed] [Google Scholar]
  21. Wiklander OPB, Nordin JZ, O’Loughlin Aet al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J Extracell Vesicles 2015 ; 4 : 1–13. [Google Scholar]
  22. Pužar Dominkuš P, Stenovec M, Sitar S, et al. PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta - Biomembr 2018; 1860 : 1350–61. [CrossRef] [Google Scholar]
  23. Chuo STY, Chien JCY, Lai CPK. Imaging extracellular vesicles: Current and emerging methods. J Biomed Sci 2018 ; 25 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  24. Kang M, Jordan V, Blenkiron C, et al. Biodistribution of extracellular vesicles following administration into animals: A systematic review. J Extracell Vesicles 2021; 10. [Google Scholar]
  25. Zomer A, Maynard C, Verweij FJet al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 2015 ; 161 : 1046–1057. [CrossRef] [PubMed] [Google Scholar]
  26. Lai CP, Kim EY, Badr CEet al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun 2015 ; 6 : 1–12. [Google Scholar]
  27. Frederik Verweij AJ, Revenu C, Arras Get al. Live Tracking of Inter-organ Communication by Endogenous Exosomes In Vivo. Dev Cell 2019 ; 48 : 573–89e4. [Google Scholar]
  28. Hyenne V, Ghoroghi S, Collot Met al. Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev Cell 2019 ; 48 : 554–72 e7. [CrossRef] [PubMed] [Google Scholar]
  29. Luo W, Dai Y, Chen Z, et al. Spatial and temporal tracking of cardiac exosomes in mouse using a nano-luciferase-CD63 fusion protein. Commun Biol 2020; 3 : 1–9. [CrossRef] [PubMed] [Google Scholar]
  30. Takahashi Y, Nishikawa M, Shinotsuka Het al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol 2013 ; 165 : 77–84. [CrossRef] [PubMed] [Google Scholar]
  31. Lai CP, Mardini O, Ericsson Met al. Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 2014 ; 8 : 483–494. [CrossRef] [PubMed] [Google Scholar]
  32. Kanada M, Bachmann MH, Hardy JWet al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA 2015 ; 112 : E1433–E1442. [CrossRef] [PubMed] [Google Scholar]
  33. Gangadaran P, Li XJ, Lee HWet al. A new Bioluminescent reporter system to study the Biodistribution of systematically injected tumor-derived Bioluminescent extracellular Vesicles in mice. Oncotarget 2017 ; 8 : 109894–109914. [CrossRef] [PubMed] [Google Scholar]
  34. Wu AYT, Sung YC, Chen YJ, et al. Multiresolution Imaging Using Bioluminescence Resonance Energy Transfer Identifies Distinct Biodistribution Profiles of Extracellular Vesicles and Exomeres with Redirected Tropism. Adv Sci 2020; 7 : 2001467. [CrossRef] [Google Scholar]
  35. Beer KB, Wehman AM. Mechanisms and functions of extracellular vesicle release in vivo – What we can learn from flies and worms. Cell Adhes Migr 2017 ; 11 : 135–150. [CrossRef] [PubMed] [Google Scholar]
  36. Androuin A, Verweij FJ, Niel G van. Zebrafish as a preclinical model for Extracellular Vesicle-based therapeutic development. Adv Drug Deliv Rev 2021. [Google Scholar]
  37. Fan S, Kroeger B, Marie PP, et al. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J 2020; 39 : e103009. [PubMed] [Google Scholar]
  38. Yang T, Martin P, Fogarty Bet al. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharm Res 2015 ; 32 : 2003–2014. [CrossRef] [PubMed] [Google Scholar]
  39. Ridder K, Sevko A, Heide Jet al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology 2015 ; 4 : 1–8. [Google Scholar]
  40. Thomou T, Mori MA, Dreyfuss JMet al. Adipose-Derived Circulating miRNAs Regulate Gene Expression in Other Tissues. Nature 2017 ; 542 : 450–455. [CrossRef] [PubMed] [Google Scholar]
  41. Sterzenbach U, Putz U, Low LHet al. Engineered Exosomes as Vehicles for Biologically Active Proteins. Mol Ther. 2017 ; 25 : 1269–1278. [CrossRef] [Google Scholar]
  42. Bonsergent E, Grisard E, Buchrieser J, et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat Commun 2021; 12 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  43. Coatrieux JL, Velut J, Dillenseger JL, Toumoulin C. De l’imagerie médicale à la thérapie guidée par l’image - Représentation en sciences du vivant (3). Med Sci (Paris) 2010 ; 26 : 1103–1109. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Jullien L, Gautier A. Des sondes fluorescentes hybrides pour l’imagerie « à la demande » des protéines cellulaires. Med Sci (Paris) 2017 ; 33 : 576–578. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Follain G, Gensbittel V, Benjmin Mary B, et al. Influence de la mécanique des fluides sur la formation des métastases. Med Sci (Paris) 2020; 36 : 872–8. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  46. Ghossoub R, Leblanc R, David G, Zimmermann P. Tétraspanines et syndécans : complices dans le « trafic » des exosomes ? Med Sci (Paris) 2021; 37 : 1101–7. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.