Open Access
Med Sci (Paris)
Volume 37, Number 11, Novembre 2021
Page(s) 1047 - 1054
Section Repères
Published online 01 December 2021
  1. Nakatomi Y, Mizuno K, Ishii A, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an 11C-(R)-PK11195 PET study. J Nucl Med 2014 ; 55 : 945–950. [CrossRef] [PubMed] [Google Scholar]
  2. Sweetman E, Kleffmann T, Edgar C, et al. A SWATH-MS analysis of myalgic encephalomyelitis/chronic fatigue syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J Transl Med 2020; 18 : 365. [CrossRef] [PubMed] [Google Scholar]
  3. Olson K, Marc DT, Grude LA, et al. The hypothalamic-pituitary-adrenal axis: the actions of the central nervous system and potential biomarkers. Anti-Aging Therapeutics 2010 Conference Year 2010; 13 : 91–100. [Google Scholar]
  4. Carrasco GA, van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003 ; 463 : 235–272. [CrossRef] [PubMed] [Google Scholar]
  5. Goebel MU, Baase J, Pithan V, et al. Acute interferon β-1b administration alters hypothalamic-pituitary-adrenal axis activity, plasma cytokines and leukocyte distribution in healthy subjects. Psychoneuroendocrinol 2002 ; 27 : 881–892. [CrossRef] [Google Scholar]
  6. Rivat C, Becker C, Blugeot A, et al. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 2010 ; 150 : 358–368. [CrossRef] [PubMed] [Google Scholar]
  7. Trautmann A. From kinetics and cellular cooperations to cancer immunotherapies. Oncotarget 2016 ; 7 : 44779–44789. [CrossRef] [PubMed] [Google Scholar]
  8. Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003 ; 160 : 1554–1565. [CrossRef] [PubMed] [Google Scholar]
  9. Mackay A. A neuro-inflammatory model can explain the onset, symptoms and flare-ups of myalgic encephalomyelitis/chronic fatigue syndrome. J Prim Health Care 2019 ; 11 : 300–307. [CrossRef] [Google Scholar]
  10. Monro JA, Puri BK. A Molecular neurobiological approach to understanding the aetiology of chronic fatigue syndrome (myalgic encephalomyelitis or systemic exertion intolerance disease) with treatment implications. Mol Neurobiol 2018 ; 55 : 7377–7388. [CrossRef] [PubMed] [Google Scholar]
  11. Sousa-Valente J, Brain SD. A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol 2018 ; 40 : 229–236. [CrossRef] [PubMed] [Google Scholar]
  12. Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 2017 ; 38 : 5–19. [CrossRef] [PubMed] [Google Scholar]
  13. Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016 ; 12 : 49–62. [CrossRef] [PubMed] [Google Scholar]
  14. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000 ; 908 : 244–254. [Google Scholar]
  15. Guedj E, Campion JY, Dudouet P, et al. 18F-FDG brain PET hypometabolism in patients with long Covid. Eur J Nucl Med Mol Imaging 2021; Jan26 : 1–11. [Google Scholar]
  16. Naviaux RK, Naviaux JC, Li K, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA 2016 ; 113 : E5472–E5480. [CrossRef] [PubMed] [Google Scholar]
  17. Missailidis D, Sanislav O, Allan CY, et al. Cell-based blood biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome. Int J Mol Sci 2020; 21 : 1142. [CrossRef] [Google Scholar]
  18. Esfandyarpour R, Kashi A, Nemat-Gorgani M, et al. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc Natl Acad Sci USA 2019 ; 116 : 10250–10257. [CrossRef] [PubMed] [Google Scholar]
  19. Pescio LG, Favale NO, Márquez MG, et al. Glycosphingolipid synthesis is essential for MDCK cell differentiation. Biochim Biophys Acta 2012 ; 1821 : 884–894. [CrossRef] [PubMed] [Google Scholar]
  20. Wang T, Yin J, Miller AH, et al. A systematic review of the association between fatigue and genetic polymorphisms. Brain Behav Immun 2017 ; 62 : 230–244. [CrossRef] [PubMed] [Google Scholar]
  21. Piraino B, Vollmer-Conna U, Lloyd AR. Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 2012 ; 26 : 552–558. [CrossRef] [PubMed] [Google Scholar]
  22. Vollmer-Conna U, Cameron B, Hadzi-Pavlovic D, et al. Postinfective fatigue syndrome is not associated with altered cytokine production. Clin Infect Dis 2007 ; 45 : 732–735. [CrossRef] [PubMed] [Google Scholar]
  23. Amel Kashipaz MR, Swinden D, Todd I, et al. Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clin Exp Immunol 2003 ; 132 : 360–365. [CrossRef] [PubMed] [Google Scholar]
  24. Hornig M, Montoya JG, Klimas NG, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv 2015 ; 1 : e1400121. [CrossRef] [PubMed] [Google Scholar]
  25. Bauer JW, Baechler EC, Petri M, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006 ; 3 : e491. [CrossRef] [PubMed] [Google Scholar]
  26. Sellam J, Rouanet S, Hendel-Chavez H, et al. CCL19, a B cell chemokine, is related to the decrease of blood memory B cells and predicts the clinical response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2013 ; 65 : 2253–2261. [CrossRef] [PubMed] [Google Scholar]
  27. Aucott JN, Soloski MJ, Rebman AW, et al. CCL19 as a chemokine risk factor for posttreatment lyme disease syndrome: a prospective clinical cohort study. Clin Vaccine Immunol 2016 ; 23 : 757–766. [CrossRef] [PubMed] [Google Scholar]
  28. Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005 ; 114 : 29–36. [CrossRef] [PubMed] [Google Scholar]
  29. Brazier JE, Harper R, Jones NM, et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 1992 ; 305 : 160–164. [CrossRef] [PubMed] [Google Scholar]
  30. Fasick V, Spengler RN, Samankan S, et al. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015 ; 53 : 139–159. [CrossRef] [PubMed] [Google Scholar]
  31. Sharpe M, Chalder T, Johnson AL, et al. Do more people recover from chronic fatigue syndrome with cognitive behaviour therapy or graded exercise therapy than with other treatments? Fatigue: Biomed. Health Behav 2017 ; 5 : 57–61. [Google Scholar]
  32. Wilshire C, Kindlon T, Matthees A, et al. Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavioural therapy? A critical commentary and preliminary re-analysis of the PACE trial. Fatigue Biomed Health Behav 2017 ; 5 : 43–56. [CrossRef] [Google Scholar]
  33. Birch CS, Brasch NE, McCaddon A, et al. A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 2009 ; 47 : 184–188. [CrossRef] [PubMed] [Google Scholar]
  34. Weinberg JB, Chen Y, Jiang N, et al. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 2009 ; 46 : 1626–1632. [CrossRef] [PubMed] [Google Scholar]
  35. Campen CLM van, Riepma K, Visser FC. Open trial of vitamin B12 nasal drops in adults with myalgic encephalomyelitis/chronic fatigue syndrome: comparison of responders and non-responders. Front Pharmacol 2019; 10. [PubMed] [Google Scholar]
  36. Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 1998 ; 128 : 68–72. [CrossRef] [PubMed] [Google Scholar]
  37. Nowak A, Boesch L, Andres E, et al. Effect of vitamin D3 on self-perceived fatigue: a double-blind randomized placebo-controlled trial. Medicine (Baltimore) 2016 ; 95 : e5353. [CrossRef] [PubMed] [Google Scholar]
  38. Lee SH, Vigliotti JS, Vigliotti VS, et al. Detection of borreliae in archived sera from patients with clinically suspect Lyme disease. Int J Mol Sci 2014 ; 15 : 4284–4298. [CrossRef] [PubMed] [Google Scholar]
  39. Embers ME, Hasenkampf NR, Jacobs MB, et al. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS One 2017 ; 12 : e0189071. [CrossRef] [PubMed] [Google Scholar]
  40. Beridze M, Khizanishvili N, Mdivani M, et al. Unusual manifestation of neuroborreliosis (case report). Georgian Med News 2017 ; 72–75. [PubMed] [Google Scholar]
  41. Ferjani-Grandmougin A. Une SEP déguisée en Lyme. Paris : L’Harmattan, 2021. [Google Scholar]
  42. Miklossy J. Bacterial amyloid and DNA are important constituents of senile plaques: further evidence of the spirochetal and biofilm nature of senile plaques. J Alzheimers Dis. 2016 ; 53 : 1459–1473. [CrossRef] [Google Scholar]
  43. Fülöp T, Itzhaki RF, Balin BJ, et al. Role of microbes in the development of Alzheimer’s disease: state of the art - an international symposium presented at the 2017 IAGG congress in San Francisco. Front Genet 2018 ; 9 : 362. [CrossRef] [PubMed] [Google Scholar]
  44. Abbott A. Are infections seeding some cases of Alzheimer’s disease? Nature 2020; 587 : 22–5. [CrossRef] [PubMed] [Google Scholar]
  45. Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (NY) 2018 ; 4 : 575–590. [CrossRef] [Google Scholar]
  46. Kumar DKV, Choi SH, Washicosky KJ, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016; 8 : 340ra72. [PubMed] [Google Scholar]
  47. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s disease-associated β-Amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018 ; 99 : 56–63e3. [CrossRef] [PubMed] [Google Scholar]
  48. Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond) 2010 ; 7 : 79. [CrossRef] [PubMed] [Google Scholar]
  49. Morrissette M, Pitt N, González A, et al. A Distinct microbiome signature in posttreatment lyme disease patients. mBio 2020; 11 : e02310–20. [CrossRef] [PubMed] [Google Scholar]
  50. Salmon-Ceron D, Slama D, Broucker TD, et al. Clinical, virological and imaging profile in patients with prolonged forms of Covid-19: a cross-sectional study. J Infect 2020; 82 : e1–4. [Google Scholar]
  51. Nehme M, Braillard O, Alcoba G, et al. Covid-19 symptoms: longitudinal evolution and persistence in outpatient settings. Ann Intern Med 2020; 174 : 723–5. [Google Scholar]
  52. Cortinovis M, Perico N, Remuzzi G. Long-term follow-up of recovered patients with Covid-19. Lancet 2021; 397 : 173–5. [CrossRef] [PubMed] [Google Scholar]
  53. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397 : 220–32. [CrossRef] [PubMed] [Google Scholar]
  54. Ranque B. Covid long : La pérennisation des symptômes est d’origine psychosomatique pour une majorité des patients. Le Quotidien du Médecin 8 avril 2021. [Google Scholar]
  55. Tansey CM, Louie M, Loeb M, et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med 2007 ; 167 : 1312–1320. [CrossRef] [PubMed] [Google Scholar]
  56. Lam MHB, Wing Y-K, Yu MWM, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med 2009 ; 169 : 2142–2147. [CrossRef] [PubMed] [Google Scholar]
  57. Wilson HW, Amo-Addae M, Kenu E, et al. Post-Ebola syndrome among Ebola virus disease survivors in Montserrado county, Liberia 2016. Biomed Res Int 2018 ; 2018 : e1909410. [CrossRef] [Google Scholar]
  58. Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021; 218 : e20202135. [CrossRef] [PubMed] [Google Scholar]
  59. Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One 2020; 15 : e0240784. [CrossRef] [PubMed] [Google Scholar]
  60. Jacobson KB, Rao M, Bonilla H, et al. Patients with uncomplicated coronavirus disease 2019 (COVID-19) have long-term persistent symptoms and functional impairment similar to patients with severe Covid-19: a cautionary tale during a global pandemic. Clin Infect Dis 2021; 73: e826–9. [CrossRef] [PubMed] [Google Scholar]
  61. Seet RCS, Quek AML, Lim ECH. Post-infectious fatigue syndrome in dengue infection. J Clin Virol 2007 ; 38 : 1–6. [CrossRef] [PubMed] [Google Scholar]
  62. Trautmann A. La fatigue chronique, un symptôme trop souvent négligé. I. Une immunité dérégulée a son origine ? Med Sci (Paris) 2021; 37 : 910–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.