Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 11, Novembre 2021
|
|
---|---|---|
Page(s) | 1047 - 1054 | |
Section | Repères | |
DOI | https://doi.org/10.1051/medsci/2021170 | |
Publié en ligne | 1 décembre 2021 |
- Nakatomi Y, Mizuno K, Ishii A, et al. Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an 11C-(R)-PK11195 PET study. J Nucl Med 2014 ; 55 : 945–950. [CrossRef] [PubMed] [Google Scholar]
- Sweetman E, Kleffmann T, Edgar C, et al. A SWATH-MS analysis of myalgic encephalomyelitis/chronic fatigue syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J Transl Med 2020; 18 : 365. [CrossRef] [PubMed] [Google Scholar]
- Olson K, Marc DT, Grude LA, et al. The hypothalamic-pituitary-adrenal axis: the actions of the central nervous system and potential biomarkers. Anti-Aging Therapeutics 2010 Conference Year 2010; 13 : 91–100. [Google Scholar]
- Carrasco GA, van de Kar LD. Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003 ; 463 : 235–272. [CrossRef] [PubMed] [Google Scholar]
- Goebel MU, Baase J, Pithan V, et al. Acute interferon β-1b administration alters hypothalamic-pituitary-adrenal axis activity, plasma cytokines and leukocyte distribution in healthy subjects. Psychoneuroendocrinol 2002 ; 27 : 881–892. [CrossRef] [Google Scholar]
- Rivat C, Becker C, Blugeot A, et al. Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 2010 ; 150 : 358–368. [CrossRef] [PubMed] [Google Scholar]
- Trautmann A. From kinetics and cellular cooperations to cancer immunotherapies. Oncotarget 2016 ; 7 : 44779–44789. [CrossRef] [PubMed] [Google Scholar]
- Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003 ; 160 : 1554–1565. [CrossRef] [PubMed] [Google Scholar]
- Mackay A. A neuro-inflammatory model can explain the onset, symptoms and flare-ups of myalgic encephalomyelitis/chronic fatigue syndrome. J Prim Health Care 2019 ; 11 : 300–307. [CrossRef] [Google Scholar]
- Monro JA, Puri BK. A Molecular neurobiological approach to understanding the aetiology of chronic fatigue syndrome (myalgic encephalomyelitis or systemic exertion intolerance disease) with treatment implications. Mol Neurobiol 2018 ; 55 : 7377–7388. [CrossRef] [PubMed] [Google Scholar]
- Sousa-Valente J, Brain SD. A historical perspective on the role of sensory nerves in neurogenic inflammation. Semin Immunopathol 2018 ; 40 : 229–236. [CrossRef] [PubMed] [Google Scholar]
- Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends Immunol 2017 ; 38 : 5–19. [CrossRef] [PubMed] [Google Scholar]
- Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2016 ; 12 : 49–62. [CrossRef] [PubMed] [Google Scholar]
- Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 2000 ; 908 : 244–254. [Google Scholar]
- Guedj E, Campion JY, Dudouet P, et al. 18F-FDG brain PET hypometabolism in patients with long Covid. Eur J Nucl Med Mol Imaging 2021; Jan26 : 1–11. [Google Scholar]
- Naviaux RK, Naviaux JC, Li K, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci USA 2016 ; 113 : E5472–E5480. [CrossRef] [PubMed] [Google Scholar]
- Missailidis D, Sanislav O, Allan CY, et al. Cell-based blood biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome. Int J Mol Sci 2020; 21 : 1142. [CrossRef] [Google Scholar]
- Esfandyarpour R, Kashi A, Nemat-Gorgani M, et al. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc Natl Acad Sci USA 2019 ; 116 : 10250–10257. [CrossRef] [PubMed] [Google Scholar]
- Pescio LG, Favale NO, Márquez MG, et al. Glycosphingolipid synthesis is essential for MDCK cell differentiation. Biochim Biophys Acta 2012 ; 1821 : 884–894. [CrossRef] [PubMed] [Google Scholar]
- Wang T, Yin J, Miller AH, et al. A systematic review of the association between fatigue and genetic polymorphisms. Brain Behav Immun 2017 ; 62 : 230–244. [CrossRef] [PubMed] [Google Scholar]
- Piraino B, Vollmer-Conna U, Lloyd AR. Genetic associations of fatigue and other symptom domains of the acute sickness response to infection. Brain Behav Immun 2012 ; 26 : 552–558. [CrossRef] [PubMed] [Google Scholar]
- Vollmer-Conna U, Cameron B, Hadzi-Pavlovic D, et al. Postinfective fatigue syndrome is not associated with altered cytokine production. Clin Infect Dis 2007 ; 45 : 732–735. [CrossRef] [PubMed] [Google Scholar]
- Amel Kashipaz MR, Swinden D, Todd I, et al. Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clin Exp Immunol 2003 ; 132 : 360–365. [CrossRef] [PubMed] [Google Scholar]
- Hornig M, Montoya JG, Klimas NG, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv 2015 ; 1 : e1400121. [CrossRef] [PubMed] [Google Scholar]
- Bauer JW, Baechler EC, Petri M, et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med 2006 ; 3 : e491. [CrossRef] [PubMed] [Google Scholar]
- Sellam J, Rouanet S, Hendel-Chavez H, et al. CCL19, a B cell chemokine, is related to the decrease of blood memory B cells and predicts the clinical response to rituximab in patients with rheumatoid arthritis. Arthritis Rheum 2013 ; 65 : 2253–2261. [CrossRef] [PubMed] [Google Scholar]
- Aucott JN, Soloski MJ, Rebman AW, et al. CCL19 as a chemokine risk factor for posttreatment lyme disease syndrome: a prospective clinical cohort study. Clin Vaccine Immunol 2016 ; 23 : 757–766. [CrossRef] [PubMed] [Google Scholar]
- Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005 ; 114 : 29–36. [CrossRef] [PubMed] [Google Scholar]
- Brazier JE, Harper R, Jones NM, et al. Validating the SF-36 health survey questionnaire: new outcome measure for primary care. BMJ 1992 ; 305 : 160–164. [CrossRef] [PubMed] [Google Scholar]
- Fasick V, Spengler RN, Samankan S, et al. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015 ; 53 : 139–159. [CrossRef] [PubMed] [Google Scholar]
- Sharpe M, Chalder T, Johnson AL, et al. Do more people recover from chronic fatigue syndrome with cognitive behaviour therapy or graded exercise therapy than with other treatments? Fatigue: Biomed. Health Behav 2017 ; 5 : 57–61. [Google Scholar]
- Wilshire C, Kindlon T, Matthees A, et al. Can patients with chronic fatigue syndrome really recover after graded exercise or cognitive behavioural therapy? A critical commentary and preliminary re-analysis of the PACE trial. Fatigue Biomed Health Behav 2017 ; 5 : 43–56. [CrossRef] [Google Scholar]
- Birch CS, Brasch NE, McCaddon A, et al. A novel role for vitamin B12: cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 2009 ; 47 : 184–188. [CrossRef] [PubMed] [Google Scholar]
- Weinberg JB, Chen Y, Jiang N, et al. Inhibition of nitric oxide synthase by cobalamins and cobinamides. Free Radic Biol Med 2009 ; 46 : 1626–1632. [CrossRef] [PubMed] [Google Scholar]
- Campen CLM van, Riepma K, Visser FC. Open trial of vitamin B12 nasal drops in adults with myalgic encephalomyelitis/chronic fatigue syndrome: comparison of responders and non-responders. Front Pharmacol 2019; 10. [PubMed] [Google Scholar]
- Cantorna MT, Hayes CE, DeLuca HF. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J Nutr 1998 ; 128 : 68–72. [CrossRef] [PubMed] [Google Scholar]
- Nowak A, Boesch L, Andres E, et al. Effect of vitamin D3 on self-perceived fatigue: a double-blind randomized placebo-controlled trial. Medicine (Baltimore) 2016 ; 95 : e5353. [CrossRef] [PubMed] [Google Scholar]
- Lee SH, Vigliotti JS, Vigliotti VS, et al. Detection of borreliae in archived sera from patients with clinically suspect Lyme disease. Int J Mol Sci 2014 ; 15 : 4284–4298. [CrossRef] [PubMed] [Google Scholar]
- Embers ME, Hasenkampf NR, Jacobs MB, et al. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS One 2017 ; 12 : e0189071. [CrossRef] [PubMed] [Google Scholar]
- Beridze M, Khizanishvili N, Mdivani M, et al. Unusual manifestation of neuroborreliosis (case report). Georgian Med News 2017 ; 72–75. [PubMed] [Google Scholar]
- Ferjani-Grandmougin A. Une SEP déguisée en Lyme. Paris : L’Harmattan, 2021. [Google Scholar]
- Miklossy J. Bacterial amyloid and DNA are important constituents of senile plaques: further evidence of the spirochetal and biofilm nature of senile plaques. J Alzheimers Dis. 2016 ; 53 : 1459–1473. [CrossRef] [Google Scholar]
- Fülöp T, Itzhaki RF, Balin BJ, et al. Role of microbes in the development of Alzheimer’s disease: state of the art - an international symposium presented at the 2017 IAGG congress in San Francisco. Front Genet 2018 ; 9 : 362. [CrossRef] [PubMed] [Google Scholar]
- Abbott A. Are infections seeding some cases of Alzheimer’s disease? Nature 2020; 587 : 22–5. [CrossRef] [PubMed] [Google Scholar]
- Kinney JW, Bemiller SM, Murtishaw AS, et al. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement (NY) 2018 ; 4 : 575–590. [CrossRef] [Google Scholar]
- Kumar DKV, Choi SH, Washicosky KJ, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016; 8 : 340ra72. [PubMed] [Google Scholar]
- Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s disease-associated β-Amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 2018 ; 99 : 56–63e3. [CrossRef] [PubMed] [Google Scholar]
- Lakhan SE, Kirchgessner A. Gut inflammation in chronic fatigue syndrome. Nutr Metab (Lond) 2010 ; 7 : 79. [CrossRef] [PubMed] [Google Scholar]
- Morrissette M, Pitt N, González A, et al. A Distinct microbiome signature in posttreatment lyme disease patients. mBio 2020; 11 : e02310–20. [CrossRef] [PubMed] [Google Scholar]
- Salmon-Ceron D, Slama D, Broucker TD, et al. Clinical, virological and imaging profile in patients with prolonged forms of Covid-19: a cross-sectional study. J Infect 2020; 82 : e1–4. [Google Scholar]
- Nehme M, Braillard O, Alcoba G, et al. Covid-19 symptoms: longitudinal evolution and persistence in outpatient settings. Ann Intern Med 2020; 174 : 723–5. [Google Scholar]
- Cortinovis M, Perico N, Remuzzi G. Long-term follow-up of recovered patients with Covid-19. Lancet 2021; 397 : 173–5. [CrossRef] [PubMed] [Google Scholar]
- Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021; 397 : 220–32. [CrossRef] [PubMed] [Google Scholar]
- Ranque B. Covid long : La pérennisation des symptômes est d’origine psychosomatique pour une majorité des patients. Le Quotidien du Médecin 8 avril 2021. [Google Scholar]
- Tansey CM, Louie M, Loeb M, et al. One-year outcomes and health care utilization in survivors of severe acute respiratory syndrome. Arch Intern Med 2007 ; 167 : 1312–1320. [CrossRef] [PubMed] [Google Scholar]
- Lam MHB, Wing Y-K, Yu MWM, et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch Intern Med 2009 ; 169 : 2142–2147. [CrossRef] [PubMed] [Google Scholar]
- Wilson HW, Amo-Addae M, Kenu E, et al. Post-Ebola syndrome among Ebola virus disease survivors in Montserrado county, Liberia 2016. Biomed Res Int 2018 ; 2018 : e1909410. [CrossRef] [Google Scholar]
- Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021; 218 : e20202135. [CrossRef] [PubMed] [Google Scholar]
- Townsend L, Dyer AH, Jones K, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One 2020; 15 : e0240784. [CrossRef] [PubMed] [Google Scholar]
- Jacobson KB, Rao M, Bonilla H, et al. Patients with uncomplicated coronavirus disease 2019 (COVID-19) have long-term persistent symptoms and functional impairment similar to patients with severe Covid-19: a cautionary tale during a global pandemic. Clin Infect Dis 2021; 73: e826–9. [CrossRef] [PubMed] [Google Scholar]
- Seet RCS, Quek AML, Lim ECH. Post-infectious fatigue syndrome in dengue infection. J Clin Virol 2007 ; 38 : 1–6. [CrossRef] [PubMed] [Google Scholar]
- Trautmann A. La fatigue chronique, un symptôme trop souvent négligé. I. Une immunité dérégulée a son origine ? Med Sci (Paris) 2021; 37 : 910–9. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.