m/s / COVID-19
Open Access
Med Sci (Paris)
Volume 37, Number 8-9, Août–Septembre 2021
m/s / COVID-19
Page(s) 759 - 772
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021094
Published online 03 June 2021
  1. COVID-19 Map. Johns Hopkins Coronavirus Resource Center 2021; https://coronavirus.jhu.edu/map.html. [Google Scholar]
  2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382 : 727–33. [Google Scholar]
  3. Muñoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature 2020; 586 : 509–15. [CrossRef] [PubMed] [Google Scholar]
  4. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371. [Google Scholar]
  5. Snyder ME, Farber DL. Human lung tissue resident memory T cells in health and disease. Curr Opin Immunol 2019 ; 59 : 101–108. [CrossRef] [PubMed] [Google Scholar]
  6. Zimmer C, Corum J, Wee SL. Coronavirus vaccine tracker. The New York Times 2021; https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. [Google Scholar]
  7. WHO. Draft landscape and tracker of COVID-19 candidate vaccines World Health Organization 2021; https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. [Google Scholar]
  8. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 383 : 2603–15. [CrossRef] [PubMed] [Google Scholar]
  9. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384 : 403–16. [CrossRef] [PubMed] [Google Scholar]
  10. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397 : 99–111. [CrossRef] [PubMed] [Google Scholar]
  11. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397 : 671–81. [CrossRef] [PubMed] [Google Scholar]
  12. Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; doi: 10.1056/NEJMoa2101544. [PubMed] [Google Scholar]
  13. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011 ; 12 : 509–517. [CrossRef] [PubMed] [Google Scholar]
  14. Sallusto F, Lanzavecchia A, Araki K, et al. From vaccines to memory and back. Immunity 2010 ; 33 : 451–463. [CrossRef] [PubMed] [Google Scholar]
  15. Siegrist CA. 2 - Vaccine immunology. In : Plotkin SA, Orenstein WA, Offit PA, editors Vaccines. 6th ed. London: W.B. Saunders, 2013 : 14–32. [CrossRef] [Google Scholar]
  16. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990 ; 247 : 1465–1468. [Google Scholar]
  17. Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993 ; 23 : 1719–1722. [CrossRef] [PubMed] [Google Scholar]
  18. Lederer K, Castaño D, Gómez Atria D, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 2020; 53 : 1281–1295.e5. [CrossRef] [PubMed] [Google Scholar]
  19. Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017 ; 390 : 1511–1520. [CrossRef] [PubMed] [Google Scholar]
  20. Feldman RA, Fuhr R, Smolenov I, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019 ; 37 : 3326–3334. [CrossRef] [PubMed] [Google Scholar]
  21. Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008 ; 372 : 1881–1893. [CrossRef] [PubMed] [Google Scholar]
  22. Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396 : 479–88. [CrossRef] [PubMed] [Google Scholar]
  23. Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020; 586 : 583–8. [CrossRef] [PubMed] [Google Scholar]
  24. Stephenson KE, Le Gars M, Sadoff J, et al. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA 2021; 325 : 1535–44. [CrossRef] [PubMed] [Google Scholar]
  25. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a Phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med 2021; NEJMoa2034201. doi: 10.1056/NEJMoa2034201. [PubMed] [Google Scholar]
  26. Solforosi L, Kuipers H, Jongeneelen M, et al. Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. J Exp Med 2021; 218 : e20202756. [CrossRef] [PubMed] [Google Scholar]
  27. Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020; 182 : 713–21.e9. [CrossRef] [PubMed] [Google Scholar]
  28. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369 : 77–81. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21 : 181–92. [CrossRef] [PubMed] [Google Scholar]
  30. Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 2020; 383 : 2320–32. [CrossRef] [PubMed] [Google Scholar]
  31. Rohaim MA, Munir M. A scalable topical vectored vaccine candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8 : 472. [CrossRef] [Google Scholar]
  32. TalonJ, SalvatoreM, O’NeillRE, et al. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Natl Acad Sci USA 2000 ; 97 : 4309–4314. [CrossRef] [Google Scholar]
  33. BroadbentAJ, SantosCP, AnafuA, et al. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine 2016 ; 34 : 563–570. [CrossRef] [PubMed] [Google Scholar]
  34. Curtis N, Sparrow A, Ghebreyesus TA, et al. Considering BCG vaccination to reduce the impact of COVID-19. Lancet 2020; 395 : 1545–1546. [CrossRef] [PubMed] [Google Scholar]
  35. de BreeLCJ, KoekenVACM, JoostenLAB, et al. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol 2018 ; 39 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  36. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 2020; 183 : 315–23.e9. [CrossRef] [PubMed] [Google Scholar]
  37. SARS-CoV-2 (hCoV-19) Mutation situation reports Outbreak.info 2021. https://outbreak.info/situation-reports. [Google Scholar]
  38. Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592 : 616–22. [CrossRef] [PubMed] [Google Scholar]
  39. Abdool Karim SS, Oliveira T de. New SARS-CoV-2 variants - clinical, public health, and vaccine implications. N Engl J Med 2021; NEJMc2100362. [PubMed] [Google Scholar]
  40. National Institute of Allergy and Infectious Diseases (NIAID). Phase 1, open-label, randomized study of the safety and immunogenicity of a SARS-CoV-2 variant vaccine (mRNA-1273.351) in naïve and previously vaccinated adults. clinicaltrials.gov, 2021. [Google Scholar]
  41. Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020; 586 : 594–9. [CrossRef] [PubMed] [Google Scholar]
  42. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary report. N Engl J Med 2020; 383 : 1920–31. [CrossRef] [PubMed] [Google Scholar]
  43. Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med 2021; 27 : 270–8. [CrossRef] [PubMed] [Google Scholar]
  44. Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest 2021; 149335. [CrossRef] [PubMed] [Google Scholar]
  45. McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 2021; 590 : 630–4. [CrossRef] [PubMed] [Google Scholar]
  46. BollesM, DemingD, LongK, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011 ; 85 : 12201–12215. [CrossRef] [PubMed] [Google Scholar]
  47. AgrawalAS, TaoX, AlgaissiA, et al. Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother 2016 ; 12 : 2351–2356. [CrossRef] [PubMed] [Google Scholar]
  48. Roozendaal R, Hendriks J, Effelterre T van, et al. Nonhuman primate to human immunobridging to infer the protective effect of an Ebola virus vaccine candidate. npj Vaccines 2020; 5 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  49. LedgerwoodJE, ZephirK, HuZ, et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 2013 ; 208 : 418–422. [CrossRef] [PubMed] [Google Scholar]
  50. MartinMD, BadovinacVP. Defining memory CD8 T cell. Front Immunol 2018 ; 9 : 2692. [CrossRef] [PubMed] [Google Scholar]
  51. WeiselF, ShlomchikM. Memory B cells of mice and humans. Annu Rev Immunol 2017 ; 35 : 255–284. [CrossRef] [PubMed] [Google Scholar]
  52. TaylorJJ, JenkinsMK, PapeKA. Heterogeneity in the differentiation and function of memory B cells. Trends Immunol 2012 ; 33 : 590–597. [CrossRef] [PubMed] [Google Scholar]
  53. Palgen J-L, Tchitchek N, Rodriguez-Pozo A, et al. Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  54. Palgen JL, Feraoun Y, Dzangué-Tchoupou G, et al. Optimize prime/boost vaccine strategies: trained immunity as a new player in the game. Front Immunol 2021; 12 : 612747. [CrossRef] [PubMed] [Google Scholar]
  55. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021; 397 : 881–91. [CrossRef] [PubMed] [Google Scholar]
  56. Thompson MG, Burgess JL, Naleway AL, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers - Eight U.S. locations, December 2020-March 2021. MMWR Morb Mortal Wkly Rep 2021; 70 : 495–500. [CrossRef] [PubMed] [Google Scholar]
  57. Amit S, Regev-Yochay G, Afek A, et al. Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet 2021; 397 : 875–7. [CrossRef] [PubMed] [Google Scholar]
  58. Hall VJ, Foulkes S, Saei A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet 2021; S0140–6736(21)00790-X. [PubMed] [Google Scholar]
  59. Rottenstreich A, Zarbiv G, Oiknine-Djian E, et al. Efficient maternofetal transplacental transfer of anti- SARS-CoV-2 spike antibodies after antenatal SARS-CoV-2 BNT162b2 mRNA vaccination. Clin Infect Dis 2021; ciab266. [CrossRef] [PubMed] [Google Scholar]
  60. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 2021; NEJMoa2102214. [PubMed] [Google Scholar]
  61. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 2021; 397 : 1351–62. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.