m/s / COVID-19
Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 8-9, Août–Septembre 2021
m/s / COVID-19
Page(s) 759 - 772
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021094
Publié en ligne 3 juin 2021
  1. COVID-19 Map. Johns Hopkins Coronavirus Resource Center 2021; https://coronavirus.jhu.edu/map.html. [Google Scholar]
  2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382 : 727–33. [Google Scholar]
  3. Muñoz-Fontela C, Dowling WE, Funnell SGP, et al. Animal models for COVID-19. Nature 2020; 586 : 509–15. [CrossRef] [PubMed] [Google Scholar]
  4. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 2021; 371. [Google Scholar]
  5. Snyder ME, Farber DL. Human lung tissue resident memory T cells in health and disease. Curr Opin Immunol 2019 ; 59 : 101–108. [CrossRef] [PubMed] [Google Scholar]
  6. Zimmer C, Corum J, Wee SL. Coronavirus vaccine tracker. The New York Times 2021; https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine-tracker.html. [Google Scholar]
  7. WHO. Draft landscape and tracker of COVID-19 candidate vaccines World Health Organization 2021; https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. [Google Scholar]
  8. Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med 2020; 383 : 2603–15. [CrossRef] [PubMed] [Google Scholar]
  9. Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384 : 403–16. [CrossRef] [PubMed] [Google Scholar]
  10. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397 : 99–111. [CrossRef] [PubMed] [Google Scholar]
  11. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021; 397 : 671–81. [CrossRef] [PubMed] [Google Scholar]
  12. Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; doi: 10.1056/NEJMoa2101544. [PubMed] [Google Scholar]
  13. Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol 2011 ; 12 : 509–517. [CrossRef] [PubMed] [Google Scholar]
  14. Sallusto F, Lanzavecchia A, Araki K, et al. From vaccines to memory and back. Immunity 2010 ; 33 : 451–463. [CrossRef] [PubMed] [Google Scholar]
  15. Siegrist CA. 2 - Vaccine immunology. In : Plotkin SA, Orenstein WA, Offit PA, editors Vaccines. 6th ed. London: W.B. Saunders, 2013 : 14–32. [CrossRef] [Google Scholar]
  16. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990 ; 247 : 1465–1468. [Google Scholar]
  17. Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol 1993 ; 23 : 1719–1722. [CrossRef] [PubMed] [Google Scholar]
  18. Lederer K, Castaño D, Gómez Atria D, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity 2020; 53 : 1281–1295.e5. [CrossRef] [PubMed] [Google Scholar]
  19. Alberer M, Gnad-Vogt U, Hong HS, et al. Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. Lancet 2017 ; 390 : 1511–1520. [CrossRef] [PubMed] [Google Scholar]
  20. Feldman RA, Fuhr R, Smolenov I, et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019 ; 37 : 3326–3334. [CrossRef] [PubMed] [Google Scholar]
  21. Buchbinder SP, Mehrotra DV, Duerr A, et al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008 ; 372 : 1881–1893. [CrossRef] [PubMed] [Google Scholar]
  22. Zhu FC, Guan XH, Li YH, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2020; 396 : 479–88. [CrossRef] [PubMed] [Google Scholar]
  23. Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020; 586 : 583–8. [CrossRef] [PubMed] [Google Scholar]
  24. Stephenson KE, Le Gars M, Sadoff J, et al. Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA 2021; 325 : 1535–44. [CrossRef] [PubMed] [Google Scholar]
  25. Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a Phase 1–2a trial of Ad26.COV2.S Covid-19 vaccine. N Engl J Med 2021; NEJMoa2034201. doi: 10.1056/NEJMoa2034201. [PubMed] [Google Scholar]
  26. Solforosi L, Kuipers H, Jongeneelen M, et al. Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. J Exp Med 2021; 218 : e20202756. [CrossRef] [PubMed] [Google Scholar]
  27. Wang H, Zhang Y, Huang B, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020; 182 : 713–21.e9. [CrossRef] [PubMed] [Google Scholar]
  28. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369 : 77–81. [CrossRef] [PubMed] [Google Scholar]
  29. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021; 21 : 181–92. [CrossRef] [PubMed] [Google Scholar]
  30. Keech C, Albert G, Cho I, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 2020; 383 : 2320–32. [CrossRef] [PubMed] [Google Scholar]
  31. Rohaim MA, Munir M. A scalable topical vectored vaccine candidate against SARS-CoV-2. Vaccines (Basel) 2020; 8 : 472. [CrossRef] [Google Scholar]
  32. TalonJ, SalvatoreM, O’NeillRE, et al. Influenza A and B viruses expressing altered NS1 proteins: a vaccine approach. Proc Natl Acad Sci USA 2000 ; 97 : 4309–4314. [CrossRef] [Google Scholar]
  33. BroadbentAJ, SantosCP, AnafuA, et al. Evaluation of the attenuation, immunogenicity, and efficacy of a live virus vaccine generated by codon-pair bias de-optimization of the 2009 pandemic H1N1 influenza virus, in ferrets. Vaccine 2016 ; 34 : 563–570. [CrossRef] [PubMed] [Google Scholar]
  34. Curtis N, Sparrow A, Ghebreyesus TA, et al. Considering BCG vaccination to reduce the impact of COVID-19. Lancet 2020; 395 : 1545–1546. [CrossRef] [PubMed] [Google Scholar]
  35. de BreeLCJ, KoekenVACM, JoostenLAB, et al. Non-specific effects of vaccines: current evidence and potential implications. Semin Immunol 2018 ; 39 : 35–43. [CrossRef] [PubMed] [Google Scholar]
  36. Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell 2020; 183 : 315–23.e9. [CrossRef] [PubMed] [Google Scholar]
  37. SARS-CoV-2 (hCoV-19) Mutation situation reports Outbreak.info 2021. https://outbreak.info/situation-reports. [Google Scholar]
  38. Wang Z, Schmidt F, Weisblum Y, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021; 592 : 616–22. [CrossRef] [PubMed] [Google Scholar]
  39. Abdool Karim SS, Oliveira T de. New SARS-CoV-2 variants - clinical, public health, and vaccine implications. N Engl J Med 2021; NEJMc2100362. [PubMed] [Google Scholar]
  40. National Institute of Allergy and Infectious Diseases (NIAID). Phase 1, open-label, randomized study of the safety and immunogenicity of a SARS-CoV-2 variant vaccine (mRNA-1273.351) in naïve and previously vaccinated adults. clinicaltrials.gov, 2021. [Google Scholar]
  41. Sahin U, Muik A, Derhovanessian E, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020; 586 : 594–9. [CrossRef] [PubMed] [Google Scholar]
  42. Jackson LA, Anderson EJ, Rouphael NG, et al. An mRNA Vaccine against SARS-CoV-2 - Preliminary report. N Engl J Med 2020; 383 : 1920–31. [CrossRef] [PubMed] [Google Scholar]
  43. Ewer KJ, Barrett JR, Belij-Rammerstorfer S, et al. T cell and antibody responses induced by a single dose of ChAdOx1 nCoV-19 (AZD1222) vaccine in a phase 1/2 clinical trial. Nat Med 2021; 27 : 270–8. [CrossRef] [PubMed] [Google Scholar]
  44. Woldemeskel BA, Garliss CC, Blankson JN. SARS-CoV-2 mRNA vaccines induce broad CD4+ T cell responses that recognize SARS-CoV-2 variants and HCoV-NL63. J Clin Invest 2021; 149335. [CrossRef] [PubMed] [Google Scholar]
  45. McMahan K, Yu J, Mercado NB, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 2021; 590 : 630–4. [CrossRef] [PubMed] [Google Scholar]
  46. BollesM, DemingD, LongK, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011 ; 85 : 12201–12215. [CrossRef] [PubMed] [Google Scholar]
  47. AgrawalAS, TaoX, AlgaissiA, et al. Immunization with inactivated Middle East respiratory syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus. Hum Vaccin Immunother 2016 ; 12 : 2351–2356. [CrossRef] [PubMed] [Google Scholar]
  48. Roozendaal R, Hendriks J, Effelterre T van, et al. Nonhuman primate to human immunobridging to infer the protective effect of an Ebola virus vaccine candidate. npj Vaccines 2020; 5 : 1–11. [CrossRef] [PubMed] [Google Scholar]
  49. LedgerwoodJE, ZephirK, HuZ, et al. Prime-boost interval matters: a randomized phase 1 study to identify the minimum interval necessary to observe the H5 DNA influenza vaccine priming effect. J Infect Dis 2013 ; 208 : 418–422. [CrossRef] [PubMed] [Google Scholar]
  50. MartinMD, BadovinacVP. Defining memory CD8 T cell. Front Immunol 2018 ; 9 : 2692. [CrossRef] [PubMed] [Google Scholar]
  51. WeiselF, ShlomchikM. Memory B cells of mice and humans. Annu Rev Immunol 2017 ; 35 : 255–284. [CrossRef] [PubMed] [Google Scholar]
  52. TaylorJJ, JenkinsMK, PapeKA. Heterogeneity in the differentiation and function of memory B cells. Trends Immunol 2012 ; 33 : 590–597. [CrossRef] [PubMed] [Google Scholar]
  53. Palgen J-L, Tchitchek N, Rodriguez-Pozo A, et al. Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5 : 1–16. [CrossRef] [PubMed] [Google Scholar]
  54. Palgen JL, Feraoun Y, Dzangué-Tchoupou G, et al. Optimize prime/boost vaccine strategies: trained immunity as a new player in the game. Front Immunol 2021; 12 : 612747. [CrossRef] [PubMed] [Google Scholar]
  55. Voysey M, Costa Clemens SA, Madhi SA, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021; 397 : 881–91. [CrossRef] [PubMed] [Google Scholar]
  56. Thompson MG, Burgess JL, Naleway AL, et al. Interim estimates of vaccine effectiveness of BNT162b2 and mRNA-1273 COVID-19 vaccines in preventing SARS-CoV-2 infection among health care personnel, first responders, and other essential and frontline workers - Eight U.S. locations, December 2020-March 2021. MMWR Morb Mortal Wkly Rep 2021; 70 : 495–500. [CrossRef] [PubMed] [Google Scholar]
  57. Amit S, Regev-Yochay G, Afek A, et al. Early rate reductions of SARS-CoV-2 infection and COVID-19 in BNT162b2 vaccine recipients. Lancet 2021; 397 : 875–7. [CrossRef] [PubMed] [Google Scholar]
  58. Hall VJ, Foulkes S, Saei A, et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): a prospective, multicentre, cohort study. Lancet 2021; S0140–6736(21)00790-X. [PubMed] [Google Scholar]
  59. Rottenstreich A, Zarbiv G, Oiknine-Djian E, et al. Efficient maternofetal transplacental transfer of anti- SARS-CoV-2 spike antibodies after antenatal SARS-CoV-2 BNT162b2 mRNA vaccination. Clin Infect Dis 2021; ciab266. [CrossRef] [PubMed] [Google Scholar]
  60. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 2021; NEJMoa2102214. [PubMed] [Google Scholar]
  61. Emary KRW, Golubchik T, Aley PK, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet 2021; 397 : 1351–62. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.