Open Access
Issue
Med Sci (Paris)
Volume 37, Number 8-9, Août–Septembre 2021
Page(s) 726 - 734
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021108
Published online 07 September 2021
  1. LachaierE, LouandreC, EzzoukhryZ, et al. La ferroptose, une nouvelle forme de mort cellulaire applicable au traitement médical des cancers. Med Sci (Paris) 2014 ; 30 : 779–783. [PubMed] [Google Scholar]
  2. DixonSJ, LembergKM, LamprechtMR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 ; 149 : 1060–1072. [PubMed] [Google Scholar]
  3. Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 2020; 22 : 1042–8. [PubMed] [Google Scholar]
  4. KaganVE, MaoG, QuF, et al. Oxi-dized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017 ; 13 : 81–90. [PubMed] [Google Scholar]
  5. Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020; 22 : 225–34. [PubMed] [Google Scholar]
  6. TesfayL, PaulBT, KonstorumA, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res 2019 ; 79 : 5355–5366. [PubMed] [Google Scholar]
  7. DollS, PronethB, TyurinaYY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017 ; 13 : 91–98. [PubMed] [Google Scholar]
  8. BaiY, MengL, HanL, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 2019 ; 508 : 997–1003. [PubMed] [Google Scholar]
  9. Zou Y, Henry WS, Ricq EL, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585 : 603–8. [PubMed] [Google Scholar]
  10. Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 2020; 16 : 302–9. [PubMed] [Google Scholar]
  11. YangWS, SriRamaratnamR, WelschME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 ; 156 : 317–331. [PubMed] [Google Scholar]
  12. BersukerK, HendricksJM, LiZ, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019 ; 575 : 688–692. [PubMed] [Google Scholar]
  13. DollS, FreitasFP, ShahR, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 ; 575 : 693–698. [PubMed] [Google Scholar]
  14. Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020; 16 : 1351–60. [PubMed] [Google Scholar]
  15. SunX, OuZ, ChenR, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016 ; 63 : 173–184. [PubMed] [Google Scholar]
  16. GaoM, YiJ, ZhuJ, et al. Role of Mitochondria in Ferroptosis. Mol Cell 2019 ; 73 : 354–363e3. [Google Scholar]
  17. HouW, XieY, SongX, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 ; 12 : 1425–1428. [PubMed] [Google Scholar]
  18. Yang M, Chen P, Liu J, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 2019; 5 : eaaw2238. [PubMed] [Google Scholar]
  19. JiangL, KonN, LiT, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 ; 520 : 57–62. [PubMed] [Google Scholar]
  20. LiuDS, DuongCP, HauptS, et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 2017 ; 8 : 14844. [PubMed] [Google Scholar]
  21. ChuB, KonN, ChenD, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 2019 ; 21 : 579–591. [PubMed] [Google Scholar]
  22. OuY, WangSJ, LiD, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 2016 ; 113 : E6806–E6812. [Google Scholar]
  23. XieY, ZhuS, SongX, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 2017 ; 20 : 1692–1704. [PubMed] [Google Scholar]
  24. TarangeloA, MagtanongL, Bieging-RolettKT, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 2018 ; 22 : 569–575. [PubMed] [Google Scholar]
  25. ZhangY, ShiJ, LiuX, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018 ; 20 : 1181–1192. [PubMed] [Google Scholar]
  26. Friedmann AngeliJP, SchneiderM, PronethB, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014 ; 16 : 1180–1191. [PubMed] [Google Scholar]
  27. SeilerA, SchneiderM, FörsterH, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 2008 ; 8 : 237–248. [PubMed] [Google Scholar]
  28. Dai E, Han L, Liu J, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020; 16 : 2069–83. [PubMed] [Google Scholar]
  29. Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020; 11 : 6339. [PubMed] [Google Scholar]
  30. WuJ, MinikesAM, GaoM, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019 ; 572 : 402–406. [PubMed] [Google Scholar]
  31. YangWH, DingCKC, SunT, et al. The hippo pathway effector taz regulates ferroptosis in renal cell carcinoma. Cell Rep 2019 ; 28 : 2501–8e4. [Google Scholar]
  32. WangW, GreenM, ChoiJE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019 ; 569 : 270–274. [PubMed] [Google Scholar]
  33. Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 2020; 585 : 113–8. [PubMed] [Google Scholar]
  34. PoursaitidisI, WangX, CrightonT, et al. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 2017 ; 18 : 2547–2556. [PubMed] [Google Scholar]
  35. WangGX, TuHC, DongY, et al. ΔNp63 inhibits oxidative stress-induced cell death including ferroptosis and cooperates with the BCL-2 family to promote clonogenic survival. Cell Rep 2017 ; 21 : 2926–2939. [PubMed] [Google Scholar]
  36. AlvarezSW, SviderskiyVO, TerziEM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017 ; 551 : 639–643. [PubMed] [Google Scholar]
  37. ZouY, PalteMJ, DeikAA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 2019 ; 10 : 1617. [PubMed] [Google Scholar]
  38. MiessH, DankworthB, GouwAM, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 2018 ; 37 : 5435–5450. [PubMed] [Google Scholar]
  39. LouandreC, MarcqI, BouhlalH, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015 ; 356 : 971–977. [PubMed] [Google Scholar]
  40. ViswanathanVS, RyanMJ, DhruvHD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017 ; 547 : 453–457. [PubMed] [Google Scholar]
  41. TsoiJ, RobertL, ParaisoK, et al. Multi-stage Differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 2018 ; 33 : 890–904e5. [Google Scholar]
  42. Tousignant KD, Rockstroh A, Poad BLJ, et al. Therapy-induced lipid uptake and remodeling underpin ferroptosis hypersensitivity in prostate cancer. Cancer Metab 2020; 8 : 11. [PubMed] [Google Scholar]
  43. HangauerMJ, ViswanathanVS, RyanMJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017 ; 551 : 247–250. [PubMed] [Google Scholar]
  44. Torti SV, Torti FM. Iron and cancer: 2020 vision. Cancer Res. 2020; 80 : 5435–48. [PubMed] [Google Scholar]
  45. BasuliD, TesfayL, DengZ, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 2017 ; 36 : 4089–4099. [PubMed] [Google Scholar]
  46. SchonbergDL, MillerTE, WuQ, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 2015 ; 28 : 441–455. [PubMed] [Google Scholar]
  47. MaiTT, HamaïA, HienzschA, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 2017 ; 9 : 1025–1033. [PubMed] [Google Scholar]
  48. ZhangY, TanH, DanielsJD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 2019 ; 26 : 623–33e9. [Google Scholar]
  49. Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368 : 85–9. [PubMed] [Google Scholar]
  50. LachaierE, LouandreC, GodinC, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 2014 ; 34 : 6417–6422. [PubMed] [Google Scholar]
  51. Birsen R, Larrue C, Decroocq J, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica 2021; doi: 10.3324/haematol.2020.259531. [PubMed] [Google Scholar]
  52. WooJH, ShimoniY, YangWS, et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 2015 ; 162 : 441–451. [PubMed] [Google Scholar]
  53. KimSE, ZhangL, MaK, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 2016 ; 11 : 977–985. [PubMed] [Google Scholar]
  54. LangX, GreenMD, WangW, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 2019 ; 9 : 1673–1685. [PubMed] [Google Scholar]
  55. Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020; 5 : e132747. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.