Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 8-9, Août–Septembre 2021
Page(s) 726 - 734
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021108
Publié en ligne 7 septembre 2021
  1. LachaierE, LouandreC, EzzoukhryZ, et al. La ferroptose, une nouvelle forme de mort cellulaire applicable au traitement médical des cancers. Med Sci (Paris) 2014 ; 30 : 779–783. [PubMed] [Google Scholar]
  2. DixonSJ, LembergKM, LamprechtMR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012 ; 149 : 1060–1072. [CrossRef] [PubMed] [Google Scholar]
  3. Riegman M, Sagie L, Galed C, et al. Ferroptosis occurs through an osmotic mechanism and propagates independently of cell rupture. Nat Cell Biol 2020; 22 : 1042–8. [PubMed] [Google Scholar]
  4. KaganVE, MaoG, QuF, et al. Oxi-dized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 2017 ; 13 : 81–90. [PubMed] [Google Scholar]
  5. Lee H, Zandkarimi F, Zhang Y, et al. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020; 22 : 225–34. [PubMed] [Google Scholar]
  6. TesfayL, PaulBT, KonstorumA, et al. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res 2019 ; 79 : 5355–5366. [PubMed] [Google Scholar]
  7. DollS, PronethB, TyurinaYY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 2017 ; 13 : 91–98. [PubMed] [Google Scholar]
  8. BaiY, MengL, HanL, et al. Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 2019 ; 508 : 997–1003. [PubMed] [Google Scholar]
  9. Zou Y, Henry WS, Ricq EL, et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020; 585 : 603–8. [PubMed] [Google Scholar]
  10. Zou Y, Li H, Graham ET, et al. Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 2020; 16 : 302–9. [PubMed] [Google Scholar]
  11. YangWS, SriRamaratnamR, WelschME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 2014 ; 156 : 317–331. [CrossRef] [PubMed] [Google Scholar]
  12. BersukerK, HendricksJM, LiZ, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 2019 ; 575 : 688–692. [PubMed] [Google Scholar]
  13. DollS, FreitasFP, ShahR, et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 2019 ; 575 : 693–698. [PubMed] [Google Scholar]
  14. Soula M, Weber RA, Zilka O, et al. Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol 2020; 16 : 1351–60. [PubMed] [Google Scholar]
  15. SunX, OuZ, ChenR, et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 2016 ; 63 : 173–184. [PubMed] [Google Scholar]
  16. GaoM, YiJ, ZhuJ, et al. Role of Mitochondria in Ferroptosis. Mol Cell 2019 ; 73 : 354–363e3. [Google Scholar]
  17. HouW, XieY, SongX, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 2016 ; 12 : 1425–1428. [CrossRef] [PubMed] [Google Scholar]
  18. Yang M, Chen P, Liu J, et al. Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 2019; 5 : eaaw2238. [PubMed] [Google Scholar]
  19. JiangL, KonN, LiT, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015 ; 520 : 57–62. [CrossRef] [PubMed] [Google Scholar]
  20. LiuDS, DuongCP, HauptS, et al. Inhibiting the system xC-/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 2017 ; 8 : 14844. [PubMed] [Google Scholar]
  21. ChuB, KonN, ChenD, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol 2019 ; 21 : 579–591. [PubMed] [Google Scholar]
  22. OuY, WangSJ, LiD, et al. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 2016 ; 113 : E6806–E6812. [Google Scholar]
  23. XieY, ZhuS, SongX, et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 2017 ; 20 : 1692–1704. [PubMed] [Google Scholar]
  24. TarangeloA, MagtanongL, Bieging-RolettKT, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells. Cell Rep 2018 ; 22 : 569–575. [PubMed] [Google Scholar]
  25. ZhangY, ShiJ, LiuX, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018 ; 20 : 1181–1192. [PubMed] [Google Scholar]
  26. Friedmann AngeliJP, SchneiderM, PronethB, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 2014 ; 16 : 1180–1191. [PubMed] [Google Scholar]
  27. SeilerA, SchneiderM, FörsterH, et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 2008 ; 8 : 237–248. [PubMed] [Google Scholar]
  28. Dai E, Han L, Liu J, et al. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 2020; 16 : 2069–83. [PubMed] [Google Scholar]
  29. Dai E, Han L, Liu J, et al. Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway. Nat Commun 2020; 11 : 6339. [PubMed] [Google Scholar]
  30. WuJ, MinikesAM, GaoM, et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 2019 ; 572 : 402–406. [PubMed] [Google Scholar]
  31. YangWH, DingCKC, SunT, et al. The hippo pathway effector taz regulates ferroptosis in renal cell carcinoma. Cell Rep 2019 ; 28 : 2501–8e4. [Google Scholar]
  32. WangW, GreenM, ChoiJE, et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 2019 ; 569 : 270–274. [PubMed] [Google Scholar]
  33. Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 2020; 585 : 113–8. [CrossRef] [PubMed] [Google Scholar]
  34. PoursaitidisI, WangX, CrightonT, et al. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep 2017 ; 18 : 2547–2556. [PubMed] [Google Scholar]
  35. WangGX, TuHC, DongY, et al. ΔNp63 inhibits oxidative stress-induced cell death including ferroptosis and cooperates with the BCL-2 family to promote clonogenic survival. Cell Rep 2017 ; 21 : 2926–2939. [PubMed] [Google Scholar]
  36. AlvarezSW, SviderskiyVO, TerziEM, et al. NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 2017 ; 551 : 639–643. [CrossRef] [PubMed] [Google Scholar]
  37. ZouY, PalteMJ, DeikAA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat Commun 2019 ; 10 : 1617. [CrossRef] [PubMed] [Google Scholar]
  38. MiessH, DankworthB, GouwAM, et al. The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene 2018 ; 37 : 5435–5450. [CrossRef] [PubMed] [Google Scholar]
  39. LouandreC, MarcqI, BouhlalH, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 2015 ; 356 : 971–977. [CrossRef] [PubMed] [Google Scholar]
  40. ViswanathanVS, RyanMJ, DhruvHD, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 2017 ; 547 : 453–457. [CrossRef] [PubMed] [Google Scholar]
  41. TsoiJ, RobertL, ParaisoK, et al. Multi-stage Differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell 2018 ; 33 : 890–904e5. [CrossRef] [Google Scholar]
  42. Tousignant KD, Rockstroh A, Poad BLJ, et al. Therapy-induced lipid uptake and remodeling underpin ferroptosis hypersensitivity in prostate cancer. Cancer Metab 2020; 8 : 11. [CrossRef] [PubMed] [Google Scholar]
  43. HangauerMJ, ViswanathanVS, RyanMJ, et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 2017 ; 551 : 247–250. [CrossRef] [PubMed] [Google Scholar]
  44. Torti SV, Torti FM. Iron and cancer: 2020 vision. Cancer Res. 2020; 80 : 5435–48. [CrossRef] [PubMed] [Google Scholar]
  45. BasuliD, TesfayL, DengZ, et al. Iron addiction: a novel therapeutic target in ovarian cancer. Oncogene 2017 ; 36 : 4089–4099. [CrossRef] [PubMed] [Google Scholar]
  46. SchonbergDL, MillerTE, WuQ, et al. Preferential iron trafficking characterizes glioblastoma stem-like cells. Cancer Cell 2015 ; 28 : 441–455. [CrossRef] [PubMed] [Google Scholar]
  47. MaiTT, HamaïA, HienzschA, et al. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat Chem 2017 ; 9 : 1025–1033. [CrossRef] [PubMed] [Google Scholar]
  48. ZhangY, TanH, DanielsJD, et al. Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 2019 ; 26 : 623–33e9. [CrossRef] [Google Scholar]
  49. Badgley MA, Kremer DM, Maurer HC, et al. Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science 2020; 368 : 85–9. [CrossRef] [PubMed] [Google Scholar]
  50. LachaierE, LouandreC, GodinC, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 2014 ; 34 : 6417–6422. [PubMed] [Google Scholar]
  51. Birsen R, Larrue C, Decroocq J, et al. APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica 2021; doi: 10.3324/haematol.2020.259531. [PubMed] [Google Scholar]
  52. WooJH, ShimoniY, YangWS, et al. Elucidating compound mechanism of action by network perturbation analysis. Cell 2015 ; 162 : 441–451. [CrossRef] [PubMed] [Google Scholar]
  53. KimSE, ZhangL, MaK, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 2016 ; 11 : 977–985. [CrossRef] [PubMed] [Google Scholar]
  54. LangX, GreenMD, WangW, et al. Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 2019 ; 9 : 1673–1685. [CrossRef] [PubMed] [Google Scholar]
  55. Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 2020; 5 : e132747. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.