Open Access
Issue
Med Sci (Paris)
Volume 37, Number 8-9, Août–Septembre 2021
Page(s) 735 - 741
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021109
Published online 07 September 2021
  1. RichterK, HaslbeckM, BuchnerJ. The heat shock response: life on the verge of death. Mol Cell 2010 ; 40 : 253–266. [CrossRef] [PubMed] [Google Scholar]
  2. FuldaS, GormanAM, HoriO, SamaliA. Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010 ; 2010 : 214074. [PubMed] [Google Scholar]
  3. AulasA, FayMM, LyonsSM, et al. Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 2017 ; 130 : 927–937. [PubMed] [Google Scholar]
  4. KedershaN, PanasMD, AchornCA, et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 2016 ; 212 : 845–860. [PubMed] [Google Scholar]
  5. KedershaN, ChenS, GilksN, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002 ; 13 : 195–210. [CrossRef] [PubMed] [Google Scholar]
  6. KedershaN, ChoMR, LiW, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000 ; 151 : 1257–1268. [CrossRef] [PubMed] [Google Scholar]
  7. AulasA, LyonsSM, FayMM, et al. Nitric oxide triggers the assembly of type II stress granules linked to decreased cell viability. Cell Death Dis 2018 ; 9 : 1129. [CrossRef] [PubMed] [Google Scholar]
  8. WheelerJR, JainS, KhongA, ParkerR. Isolation of yeast and mammalian stress granule cores. Methods 2017 ; 126 : 12–17. [CrossRef] [PubMed] [Google Scholar]
  9. MarkmillerS, SoltaniehS, ServerKL, et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018 ; 172 : 590–604e13. [Google Scholar]
  10. AulasA, FayMM, SzaflarskiW, et al. Methods to classify cytoplasmic foci as mammalian stress granules. J Vis Exp 2017 ; 123 : 55656. [Google Scholar]
  11. ProtterDSW, ParkerR. Principles and properties of stress granules. Trends Cell Biol 2016 ; 26 : 668–679. [CrossRef] [PubMed] [Google Scholar]
  12. Frydryskova K, Masek T, Pospisek M. Changing faces of stress: impact of heat and arsenite treatment on the composition of stress granules. Wiley Interdiscip Rev RNA 2020; 11 : e1596. [CrossRef] [PubMed] [Google Scholar]
  13. AulasA, VandeVelde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS ?. Front Cell Neurosci 2015 ; 9 : 423. [PubMed] [Google Scholar]
  14. Eisinger-MathasonTS, AndradeJ, GroehlerAL, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008 ; 31 : 722–736. [CrossRef] [PubMed] [Google Scholar]
  15. ArimotoK, FukudaH, Imajoh-OhmiS, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008 ; 10 : 1324–1332. [CrossRef] [PubMed] [Google Scholar]
  16. KimWJ, BackSH, KimV, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005 ; 25 : 2450–2462. [CrossRef] [PubMed] [Google Scholar]
  17. WilczynskaA, AigueperseC, KressM, et al. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 2005 ; 118 : 981–992. [CrossRef] [PubMed] [Google Scholar]
  18. KedershaNL, GuptaM, LiW, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999 ; 147 : 1431–1442. [CrossRef] [PubMed] [Google Scholar]
  19. FarnyNG, KedershaNL, SilverPA. Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms. RNA 2009 ; 15 : 1814–1821. [CrossRef] [PubMed] [Google Scholar]
  20. KimballSR, HoretskyRL, RonD, et al. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 2003 ; 284 : C273–C284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. TourriereH, GallouziIE, ChebliK, et al. RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 2001 ; 21 : 7747–7760. [CrossRef] [PubMed] [Google Scholar]
  22. KedershaN, IvanovP, AndersonP. Stress granules and cell signaling: more than just a passing phase ?. Trends Biochem Sci 2013 ; 38 : 494–506. [CrossRef] [PubMed] [Google Scholar]
  23. AulasA, CaronG, GkogkasCG, et al. G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 2015 ; 209 : 73–84. [PubMed] [Google Scholar]
  24. TourriereH, ChebliK, ZekriL, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003 ; 160 : 823–831. [CrossRef] [PubMed] [Google Scholar]
  25. PanasMD, KedershaN, SchulteT, et al. Phosphorylation of G3BP1-S149 does not influence stress granule assembly. J Cell Biol 2019 ; 218 : 2425–2432. [CrossRef] [PubMed] [Google Scholar]
  26. Yang P, Mathieu C, Kolaitis RM, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 2020; 181 : 325–45-e28. [PubMed] [Google Scholar]
  27. GilksN, KedershaN, AyodeleM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004 ; 15 : 5383–5398. [CrossRef] [PubMed] [Google Scholar]
  28. RaymanJB, KandelER. TIA-1 Is a functional prion-like protein. Cold Spring Harb Perspect Biol 2017 ; 9 : a030718. [CrossRef] [PubMed] [Google Scholar]
  29. KedershaN, AndersonP. Regulation of translation by stress granules and processing bodies. Prog Mol Biol Transl Sci 2009 ; 90 : 155–185. [CrossRef] [PubMed] [Google Scholar]
  30. JoncasFH, AdjibadeP, MazrouiR. Rôle de l’heme regulated inhibitor (HRI) dans la résistance à l’apoptose. Med Sci (Paris) 2014 ; 30 : 882–888. [PubMed] [Google Scholar]
  31. LowWK, DangY, Schneider-PoetschT, et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol Cell 2005 ; 20 : 709–722. [CrossRef] [PubMed] [Google Scholar]
  32. DangY, KedershaN, LowWK, et al. Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem 2006 ; 281 : 32870–32878. [CrossRef] [PubMed] [Google Scholar]
  33. Khong A, Matheny T, Jain S, et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 2017; 68 : 808–20-e5. [CrossRef] [PubMed] [Google Scholar]
  34. Mollet S, Cougot N, Wilczynska A, et al. Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell 2008 ; 19 : 4469–4479. [CrossRef] [PubMed] [Google Scholar]
  35. McDonaldKK, AulasA, DestroismaisonsL, et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011 ; 20 : 1400–1410. [CrossRef] [PubMed] [Google Scholar]
  36. Aulas A, Finetti P, Lyons SM, et al. Revisiting the concept of stress in the prognosis of solid tumors : a role for stress granules proteins ? Cancers (Basel) 2020; 12 : 2470. [CrossRef] [Google Scholar]
  37. AckermanD, SimonMC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 2014 ; 24 : 472–478. [CrossRef] [PubMed] [Google Scholar]
  38. Grabocka E, Bar-Sagi D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 2016; 167 : 1803–13-e12. [CrossRef] [PubMed] [Google Scholar]
  39. Song MS, Grabocka E. Stress granules in cancer. Rev Physiol Biochem Pharmacol 2020. doi: 10.1007/112_2020_37. [PubMed] [Google Scholar]
  40. Cordier-BussatM, ThibertC, SujobertP, et al. Même l’effet Warburg est oxydable : coopération métabolique et développement tumoral. Med Sci (Paris) 2018 ; 34 : 701–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. DouN, ChenJ, YuS, et al. G3BP1 contributes to tumor metastasis via upregulation of Slug expression in hepatocellular carcinoma. Am J Cancer Res 2016 ; 6 : 2641–2650. [PubMed] [Google Scholar]
  42. WangY, FuD, ChenY, et al. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis 2018 ; 9 : 501. [CrossRef] [PubMed] [Google Scholar]
  43. Zhan Y, Wang H, Ning Y, et al. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res 2020; 10 : 2226–41. [PubMed] [Google Scholar]
  44. Vilas-Boas Fde A, da Silva AM, de Sousa LP, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol 2016; 127 : 253–60. [CrossRef] [PubMed] [Google Scholar]
  45. Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26 : 5223–47. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.