Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 8-9, Août–Septembre 2021
Page(s) 735 - 741
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2021109
Publié en ligne 7 septembre 2021
  1. RichterK, HaslbeckM, BuchnerJ. The heat shock response: life on the verge of death. Mol Cell 2010 ; 40 : 253–266. [CrossRef] [PubMed] [Google Scholar]
  2. FuldaS, GormanAM, HoriO, SamaliA. Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010 ; 2010 : 214074. [PubMed] [Google Scholar]
  3. AulasA, FayMM, LyonsSM, et al. Stress-specific differences in assembly and composition of stress granules and related foci. J Cell Sci 2017 ; 130 : 927–937. [PubMed] [Google Scholar]
  4. KedershaN, PanasMD, AchornCA, et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 2016 ; 212 : 845–860. [PubMed] [Google Scholar]
  5. KedershaN, ChenS, GilksN, et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell 2002 ; 13 : 195–210. [CrossRef] [PubMed] [Google Scholar]
  6. KedershaN, ChoMR, LiW, et al. Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 2000 ; 151 : 1257–1268. [CrossRef] [PubMed] [Google Scholar]
  7. AulasA, LyonsSM, FayMM, et al. Nitric oxide triggers the assembly of type II stress granules linked to decreased cell viability. Cell Death Dis 2018 ; 9 : 1129. [CrossRef] [PubMed] [Google Scholar]
  8. WheelerJR, JainS, KhongA, ParkerR. Isolation of yeast and mammalian stress granule cores. Methods 2017 ; 126 : 12–17. [CrossRef] [PubMed] [Google Scholar]
  9. MarkmillerS, SoltaniehS, ServerKL, et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 2018 ; 172 : 590–604e13. [Google Scholar]
  10. AulasA, FayMM, SzaflarskiW, et al. Methods to classify cytoplasmic foci as mammalian stress granules. J Vis Exp 2017 ; 123 : 55656. [Google Scholar]
  11. ProtterDSW, ParkerR. Principles and properties of stress granules. Trends Cell Biol 2016 ; 26 : 668–679. [CrossRef] [PubMed] [Google Scholar]
  12. Frydryskova K, Masek T, Pospisek M. Changing faces of stress: impact of heat and arsenite treatment on the composition of stress granules. Wiley Interdiscip Rev RNA 2020; 11 : e1596. [CrossRef] [PubMed] [Google Scholar]
  13. AulasA, VandeVelde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS ?. Front Cell Neurosci 2015 ; 9 : 423. [PubMed] [Google Scholar]
  14. Eisinger-MathasonTS, AndradeJ, GroehlerAL, et al. Codependent functions of RSK2 and the apoptosis-promoting factor TIA-1 in stress granule assembly and cell survival. Mol Cell 2008 ; 31 : 722–736. [CrossRef] [PubMed] [Google Scholar]
  15. ArimotoK, FukudaH, Imajoh-OhmiS, et al. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol 2008 ; 10 : 1324–1332. [CrossRef] [PubMed] [Google Scholar]
  16. KimWJ, BackSH, KimV, et al. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 2005 ; 25 : 2450–2462. [CrossRef] [PubMed] [Google Scholar]
  17. WilczynskaA, AigueperseC, KressM, et al. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J Cell Sci 2005 ; 118 : 981–992. [CrossRef] [PubMed] [Google Scholar]
  18. KedershaNL, GuptaM, LiW, et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 1999 ; 147 : 1431–1442. [CrossRef] [PubMed] [Google Scholar]
  19. FarnyNG, KedershaNL, SilverPA. Metazoan stress granule assembly is mediated by P-eIF2alpha-dependent and -independent mechanisms. RNA 2009 ; 15 : 1814–1821. [CrossRef] [PubMed] [Google Scholar]
  20. KimballSR, HoretskyRL, RonD, et al. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am J Physiol Cell Physiol 2003 ; 284 : C273–C284. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. TourriereH, GallouziIE, ChebliK, et al. RasGAP-associated endoribonuclease G3Bp: selective RNA degradation and phosphorylation-dependent localization. Mol Cell Biol 2001 ; 21 : 7747–7760. [CrossRef] [PubMed] [Google Scholar]
  22. KedershaN, IvanovP, AndersonP. Stress granules and cell signaling: more than just a passing phase ?. Trends Biochem Sci 2013 ; 38 : 494–506. [CrossRef] [PubMed] [Google Scholar]
  23. AulasA, CaronG, GkogkasCG, et al. G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 2015 ; 209 : 73–84. [PubMed] [Google Scholar]
  24. TourriereH, ChebliK, ZekriL, et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 2003 ; 160 : 823–831. [CrossRef] [PubMed] [Google Scholar]
  25. PanasMD, KedershaN, SchulteT, et al. Phosphorylation of G3BP1-S149 does not influence stress granule assembly. J Cell Biol 2019 ; 218 : 2425–2432. [CrossRef] [PubMed] [Google Scholar]
  26. Yang P, Mathieu C, Kolaitis RM, et al. G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell 2020; 181 : 325–45-e28. [PubMed] [Google Scholar]
  27. GilksN, KedershaN, AyodeleM, et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004 ; 15 : 5383–5398. [CrossRef] [PubMed] [Google Scholar]
  28. RaymanJB, KandelER. TIA-1 Is a functional prion-like protein. Cold Spring Harb Perspect Biol 2017 ; 9 : a030718. [CrossRef] [PubMed] [Google Scholar]
  29. KedershaN, AndersonP. Regulation of translation by stress granules and processing bodies. Prog Mol Biol Transl Sci 2009 ; 90 : 155–185. [CrossRef] [PubMed] [Google Scholar]
  30. JoncasFH, AdjibadeP, MazrouiR. Rôle de l’heme regulated inhibitor (HRI) dans la résistance à l’apoptose. Med Sci (Paris) 2014 ; 30 : 882–888. [PubMed] [Google Scholar]
  31. LowWK, DangY, Schneider-PoetschT, et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol Cell 2005 ; 20 : 709–722. [CrossRef] [PubMed] [Google Scholar]
  32. DangY, KedershaN, LowWK, et al. Eukaryotic initiation factor 2alpha-independent pathway of stress granule induction by the natural product pateamine A. J Biol Chem 2006 ; 281 : 32870–32878. [CrossRef] [PubMed] [Google Scholar]
  33. Khong A, Matheny T, Jain S, et al. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 2017; 68 : 808–20-e5. [CrossRef] [PubMed] [Google Scholar]
  34. Mollet S, Cougot N, Wilczynska A, et al. Translationally repressed mRNA transiently cycles through stress granules during stress. Mol Biol Cell 2008 ; 19 : 4469–4479. [CrossRef] [PubMed] [Google Scholar]
  35. McDonaldKK, AulasA, DestroismaisonsL, et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet 2011 ; 20 : 1400–1410. [CrossRef] [PubMed] [Google Scholar]
  36. Aulas A, Finetti P, Lyons SM, et al. Revisiting the concept of stress in the prognosis of solid tumors : a role for stress granules proteins ? Cancers (Basel) 2020; 12 : 2470. [CrossRef] [Google Scholar]
  37. AckermanD, SimonMC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol 2014 ; 24 : 472–478. [CrossRef] [PubMed] [Google Scholar]
  38. Grabocka E, Bar-Sagi D. Mutant KRAS enhances tumor cell fitness by upregulating stress granules. Cell 2016; 167 : 1803–13-e12. [CrossRef] [PubMed] [Google Scholar]
  39. Song MS, Grabocka E. Stress granules in cancer. Rev Physiol Biochem Pharmacol 2020. doi: 10.1007/112_2020_37. [PubMed] [Google Scholar]
  40. Cordier-BussatM, ThibertC, SujobertP, et al. Même l’effet Warburg est oxydable : coopération métabolique et développement tumoral. Med Sci (Paris) 2018 ; 34 : 701–708. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. DouN, ChenJ, YuS, et al. G3BP1 contributes to tumor metastasis via upregulation of Slug expression in hepatocellular carcinoma. Am J Cancer Res 2016 ; 6 : 2641–2650. [PubMed] [Google Scholar]
  42. WangY, FuD, ChenY, et al. G3BP1 promotes tumor progression and metastasis through IL-6/G3BP1/STAT3 signaling axis in renal cell carcinomas. Cell Death Dis 2018 ; 9 : 501. [CrossRef] [PubMed] [Google Scholar]
  43. Zhan Y, Wang H, Ning Y, et al. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res 2020; 10 : 2226–41. [PubMed] [Google Scholar]
  44. Vilas-Boas Fde A, da Silva AM, de Sousa LP, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol 2016; 127 : 253–60. [CrossRef] [PubMed] [Google Scholar]
  45. Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26 : 5223–47. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.