m/s / COVID-19
Open Access
Issue
Med Sci (Paris)
Volume 37, Number 6-7, Juin-Juillet 2021
m/s / COVID-19
Page(s) 565 - 568
Section Le Magazine
DOI https://doi.org/10.1051/medsci/2021065
Published online 03 June 2021
  1. Zhao J, Yang Y, Huang HP, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. Clin Infect Dis 2020; ciaa1150. doi : 10.1093/cid/ciaa1150. [Google Scholar]
  2. Cheng Y, Cheng G, Chui CH, Lau FY ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA 2005 ; 293 : 1450–1451. [Google Scholar]
  3. Le Pendu J, Breiman A, Rocher J, et al. ABO blood types and Covid-19: spurious, anecdotal, or truly important relationships? A reasoned review of available data. Viruses 2021; 13 : 160. [CrossRef] [PubMed] [Google Scholar]
  4. Galili U. Human natural antibodies to mammalian carbohydrate antigens as unsung heroes protecting against past, present, and future viral infections. Antibodies (Basel) 2020; 9 : 25. [Google Scholar]
  5. Guillon P, Clément M, Sébille V, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008 ; 18 : 1085–1093. [CrossRef] [PubMed] [Google Scholar]
  6. Deleers M, Breiman A, Daubie V, et al. Covid-19 and blood groups: ABO antibody levels may also matter. Int J Infect Dis 2021; 104 : 242–9. [CrossRef] [PubMed] [Google Scholar]
  7. Stowell SR, Stowell CP Biologic roles of the ABH and Lewis histo-blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sang 2019 ; 114 : 535–552. [CrossRef] [PubMed] [Google Scholar]
  8. Kiechl S, Pare G, Barbalic M, et al. Association of variation at the ABO locus with circulating levels of soluble intercellular adhesion molecule-1, soluble P-selectin, and soluble E-selectin: a meta-analysis. Circ Cardiovasc Genet 2011 ; 4 : 681–686. [CrossRef] [PubMed] [Google Scholar]
  9. Sardu C, Marfella R, Maggi P, et al. Implications of AB0 blood group in hypertensive patients with covid-19. BMC Cardiovasc Disord 2020; 20 : 373. [CrossRef] [PubMed] [Google Scholar]
  10. Ellis PJI. Modelling suggests blood group incompatibility may substantially reduce SARS-CoV-2 transmission. Epidemics 2021. doii: 10.1016/j.epidem.2021.100446. [Google Scholar]
  11. O’Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 2021; 590 : 140–5. [CrossRef] [PubMed] [Google Scholar]
  12. Priyadrasini SL, Suresh M. Factors influencing the epidemiological characteristics of pandemic COVID 19: A TISM approach. Int J Healthcare Management 2020; 13 : 89–98. [Google Scholar]
  13. Cooling L. Blood groups in infection and host susceptibility. Clin Microbiol Rev 2015 ; 28 : 801–870. [CrossRef] [PubMed] [Google Scholar]
  14. Breiman A, Ruvën-Clouet N, Le Pendu J. Harnessing the natural anti-glycan immune response to limit the transmission of enveloped viruses such as SARS-CoV-2. PLoS Pathog 2020; 16 : e1008556. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.