Free Access
Med Sci (Paris)
Volume 37, Number 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Page(s) 461 - 467
Section La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Published online 18 May 2021
  1. GuthrieR, SusiA. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963 ; 32 : 338–343. [PubMed] [Google Scholar]
  2. Wilson J, Jungner G. Principles and practice of screening for disease. Public health papers n° 34. Geneva, Switzerland : World Health Organization, 1968. [Google Scholar]
  3. FreemanJD, RosmanLM, RatcliffJD, et al. State of the science in dried blood spots. Clin Chem 2018 ; 64 : 656–679. [PubMed] [Google Scholar]
  4. CapiauS, VeenhofH, KosterRAet al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit 2019 ; 41 : 409–430. [PubMed] [Google Scholar]
  5. Moat SJ, Dibden C, Tetlow L, et al. Effect of blood volume on analytical bias in dried blood spots prepared for newborn screening external quality assurance. Bioanalysis 2020; 12 : 99–109. [PubMed] [Google Scholar]
  6. LeutholdLA, HeudiO, DéglonJet al. New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Anal Chem 2015 ; 87 : 2068–2071. [PubMed] [Google Scholar]
  7. Sen A, Gillett M, Weaver L, et al. In vitro testing of the hemaPEN microsampling device for the quantification of acetaminophen in human blood. Bioanalysis 2020; 12 : 1725–37. [PubMed] [Google Scholar]
  8. McCamanM., RobinsE. Fluorimetric method for the determination of phenylalanine in serum. J Lab Clin Med 1962 ; 59 : 885. [Google Scholar]
  9. MillingtonDS. The role of technology in newborn screening. NC Med J 2019 ; 80 : 49–53. [Google Scholar]
  10. FrömmelC. Newborn screening for sickle cell disease and other hemoglobinopathies: a short review on classical laboratory methods-isoelectric focusing, HPLC, and capillary electrophoresis. Int J Neonatal Screen 2018 ; 4 : 39. [PubMed] [Google Scholar]
  11. MillingtonDS, KodoN, NorwoodDL, RoeCR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 1990 ; 13 : 321–324. [PubMed] [Google Scholar]
  12. RashedMS, BucknallMP, LittleDet al. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 1997 ; 43 : 1129–1141. [PubMed] [Google Scholar]
  13. Haute Autorité de Santé. Évaluation a priori de l’extension du dépistage néonatal à une ou plusieurs erreurs innées du métabolisme par spectrométrie de masse en tandem. Volet 2. Saint-Denis : HAS, 2020. [Google Scholar]
  14. LoeberJG, BurgardP, CornelMCet al. Newborn screening programmes in Europe. Arguments and efforts regarding harmonization. Part 1. From blood spot to screening result. J Inherit Metab Dis 2012 ; 35 : 603–611. [CrossRef] [PubMed] [Google Scholar]
  15. Martínez-MorilloE. Prieto García B, Álvarez Menéndez FV. Challenges for worldwide harmonization of newborn screening programs. Clin Chem 2016 ; 62 : 689–698. [PubMed] [Google Scholar]
  16. Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseases. Nat Rev Dis Primers 2018; 4 : 27. [PubMed] [Google Scholar]
  17. PiraudM, PettazzoniM, LavoiePet al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018 ; 41 : 457–477. [PubMed] [Google Scholar]
  18. GelbMH, LukacsZ, RanieriE, SchielenPCJI. Newborn screening for lysosomal storage disorders: methodologies for measurement of enzymatic activities in dried blood spots. Int J Neonatal Screen 2019 ; 5 : 1. [PubMed] [Google Scholar]
  19. SpacilZ, TatipakaH, BarcenasMet al. High-throughput assay of 9 lysosomal enzymes for newborn screening. Clin Chem 2013 ; 59 : 502–511. [PubMed] [Google Scholar]
  20. BurlinaAB, PoloG, RubertLet al. Implementation of second-tier tests in newborn screening for lysosomal disorders in North eastern Italy. Int J Neonatal Screen 2019 ; 5 : 24. [PubMed] [Google Scholar]
  21. Ames EG, Fisher R, Kleyn M, Ahmad A. Current practices for US newborn screening of pompe disease and MPSI. Int J Neonatal Screen 2020; 6 : 72. [Google Scholar]
  22. PariniR, BroomfieldA, ClearyMAet al. International working group identifies need for newborn screening for mucopolysaccharidosis type I but states that existing hurdles must be overcome. Acta Paediatr 2018 ; 107 : 2059–2065. [CrossRef] [PubMed] [Google Scholar]
  23. EhmannP, LantosJD. Ethical issues with testing and treatment for Krabbe disease. Dev Med Child Neurol 2019 ; 61 : 1358–1361. [CrossRef] [PubMed] [Google Scholar]
  24. Lee S, Clinard K, Young SP, et al. Evaluation of X-linked adrenoleukodystrophy newborn screening in North Carolina. JAMA Netw Open 2020; 3 : e1920356. [CrossRef] [PubMed] [Google Scholar]
  25. Barendsen RW, Dijkstra IME, Visser WF et al. Adrenoleukodystrophy newborn screening in the Netherlands (SCAN study): The X-factor. Front Cell Dev Biol 2020; 17 : 499. [Google Scholar]
  26. DanielY, TurnerC. Newborn sickle cell disease screening using electrospray tandem mass spectrometry. Int J Neonatal Screen 2018 24 ; 4: 35. [CrossRef] [PubMed] [Google Scholar]
  27. NaubourgP, El OstaM, RageotDet al. A Multicentre pilot study of a two-tier newborn sickle cell disease screening procedure with a first tier based on a fully automated Maldi-Tof Ms platform. Int J Neonatal Screen 2019 ; 23 : 10. [Google Scholar]
  28. Décret n° 2008–321 du 4 avril 2008 relatif à l’examen des caractéristiques génétiques d’une personne ou à son identification par empreintes génétiques à des fins médicales. [Google Scholar]
  29. AudrézetMP, MunckA, ScotetVet al. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: implications for diagnosis, genetic counseling, and mutation-specific therapy. Genet Med 2015 ; 17 : 108–116. [CrossRef] [PubMed] [Google Scholar]
  30. ThakarMS, HintermeyerMK, GriesMGet al. A Practical approach to newborn screening for severe combined immunodeficiency using the T cell receptor excision circle assay. Front Immunol 2017 ; 8 : 1470. [CrossRef] [PubMed] [Google Scholar]
  31. TaylorJL, LeeFK, YazdanpanahGKet al. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin Chem 2015 ; 61 : 412–419. [CrossRef] [PubMed] [Google Scholar]
  32. BoemerF, CabergJH, DidebergVet al. Newborn screening for SMA in Southern Belgium. Neuromuscul Disord 2019 ; 29 : 343–349. [CrossRef] [PubMed] [Google Scholar]
  33. AudrainMAP, LégerAJC, HémontCAFet al. Newborn screening for severe combined immunodeficiency: analytic and clinical performance of the T cell receptor excision circle assay in France (Depistrec Study). J Clin Immunol 2018 ; 38 : 778–786. [CrossRef] [PubMed] [Google Scholar]
  34. HolmIA, AgrawalPB, Ceyhan-BirsoyOet al. The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatr 2018 ; 18 : 225. [CrossRef] [PubMed] [Google Scholar]
  35. Yamaguchi T, Nakamura A, Nakayama K, et al. Targeted next-generation sequencing for congenital hypothyroidism with positive neonatal TSH screening. J Clin Endocrinol Metab 2020; 105 : 308. [Google Scholar]
  36. Adhikari AN, Gallagher RC, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med 2020; 26 : 1392–7. [CrossRef] [PubMed] [Google Scholar]
  37. Morava E, Baumgartner M, Patterson M, et al. Newborn screening: to WES or not to WES, that is the question. J Inherit Metab Dis 2020; 43 : 904–5. [CrossRef] [PubMed] [Google Scholar]
  38. Luginbühl M, Gaugler S. The application of fully automated dried blood spot analysis for liquid chromatography-tandem mass spectrometry using the CAMAG DBS-MS 500 autosampler. Clin Biochem 2020; 82 : 33–9. [CrossRef] [PubMed] [Google Scholar]
  39. Sanders KA, Gavrilov DK, Oglesbee D, et al. A Comparative effectiveness study of newborn screening methods for four lysosomal storage disorders. Int J Neonatal Screen 2020; 6 : 44. [CrossRef] [PubMed] [Google Scholar]
  40. Tangeraas T, Sæves I, Klingenberg C, et al. Performance of expanded newborn screening in norway supported by post-analytical bioinformatics tools and rapid second-tier DNA analyses. Int J Neonatal Screen 2020; 6 : 51. [PubMed] [Google Scholar]
  41. Farriaux JP. Histoire et organisation du programme français de dépistage néonatal systématique (1967–2020). Med Sci (Paris) 2021; 37 : 433–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.