Accès gratuit
Numéro |
Med Sci (Paris)
Volume 37, Numéro 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
|
|
---|---|---|
Page(s) | 461 - 467 | |
Section | La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale | |
DOI | https://doi.org/10.1051/medsci/2021062 | |
Publié en ligne | 18 mai 2021 |
- GuthrieR, SusiA. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963 ; 32 : 338–343. [PubMed] [Google Scholar]
- Wilson J, Jungner G. Principles and practice of screening for disease. Public health papers n° 34. Geneva, Switzerland : World Health Organization, 1968. http://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf. [Google Scholar]
- FreemanJD, RosmanLM, RatcliffJD, et al. State of the science in dried blood spots. Clin Chem 2018 ; 64 : 656–679. [PubMed] [Google Scholar]
- CapiauS, VeenhofH, KosterRAet al. Official international association for therapeutic drug monitoring and clinical toxicology guideline: development and validation of dried blood spot-based methods for therapeutic drug monitoring. Ther Drug Monit 2019 ; 41 : 409–430. [PubMed] [Google Scholar]
- Moat SJ, Dibden C, Tetlow L, et al. Effect of blood volume on analytical bias in dried blood spots prepared for newborn screening external quality assurance. Bioanalysis 2020; 12 : 99–109. [PubMed] [Google Scholar]
- LeutholdLA, HeudiO, DéglonJet al. New microfluidic-based sampling procedure for overcoming the hematocrit problem associated with dried blood spot analysis. Anal Chem 2015 ; 87 : 2068–2071. [PubMed] [Google Scholar]
- Sen A, Gillett M, Weaver L, et al. In vitro testing of the hemaPEN microsampling device for the quantification of acetaminophen in human blood. Bioanalysis 2020; 12 : 1725–37. [PubMed] [Google Scholar]
- McCamanM., RobinsE. Fluorimetric method for the determination of phenylalanine in serum. J Lab Clin Med 1962 ; 59 : 885. [Google Scholar]
- MillingtonDS. The role of technology in newborn screening. NC Med J 2019 ; 80 : 49–53. [Google Scholar]
- FrömmelC. Newborn screening for sickle cell disease and other hemoglobinopathies: a short review on classical laboratory methods-isoelectric focusing, HPLC, and capillary electrophoresis. Int J Neonatal Screen 2018 ; 4 : 39. [PubMed] [Google Scholar]
- MillingtonDS, KodoN, NorwoodDL, RoeCR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis 1990 ; 13 : 321–324. [PubMed] [Google Scholar]
- RashedMS, BucknallMP, LittleDet al. Screening blood spots for inborn errors of metabolism by electrospray tandem mass spectrometry with a microplate batch process and a computer algorithm for automated flagging of abnormal profiles. Clin Chem 1997 ; 43 : 1129–1141. [PubMed] [Google Scholar]
- Haute Autorité de Santé. Évaluation a priori de l’extension du dépistage néonatal à une ou plusieurs erreurs innées du métabolisme par spectrométrie de masse en tandem. Volet 2. Saint-Denis : HAS, 2020. https://www.has-sante.fr/jcms/c_2866458/fr/. [Google Scholar]
- LoeberJG, BurgardP, CornelMCet al. Newborn screening programmes in Europe. Arguments and efforts regarding harmonization. Part 1. From blood spot to screening result. J Inherit Metab Dis 2012 ; 35 : 603–611. [CrossRef] [PubMed] [Google Scholar]
- Martínez-MorilloE. Prieto García B, Álvarez Menéndez FV. Challenges for worldwide harmonization of newborn screening programs. Clin Chem 2016 ; 62 : 689–698. [PubMed] [Google Scholar]
- Platt FM, d’Azzo A, Davidson BL, et al. Lysosomal storage diseases. Nat Rev Dis Primers 2018; 4 : 27. [PubMed] [Google Scholar]
- PiraudM, PettazzoniM, LavoiePet al. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018 ; 41 : 457–477. [PubMed] [Google Scholar]
- GelbMH, LukacsZ, RanieriE, SchielenPCJI. Newborn screening for lysosomal storage disorders: methodologies for measurement of enzymatic activities in dried blood spots. Int J Neonatal Screen 2019 ; 5 : 1. [PubMed] [Google Scholar]
- SpacilZ, TatipakaH, BarcenasMet al. High-throughput assay of 9 lysosomal enzymes for newborn screening. Clin Chem 2013 ; 59 : 502–511. [PubMed] [Google Scholar]
- BurlinaAB, PoloG, RubertLet al. Implementation of second-tier tests in newborn screening for lysosomal disorders in North eastern Italy. Int J Neonatal Screen 2019 ; 5 : 24. [PubMed] [Google Scholar]
- Ames EG, Fisher R, Kleyn M, Ahmad A. Current practices for US newborn screening of pompe disease and MPSI. Int J Neonatal Screen 2020; 6 : 72. [Google Scholar]
- PariniR, BroomfieldA, ClearyMAet al. International working group identifies need for newborn screening for mucopolysaccharidosis type I but states that existing hurdles must be overcome. Acta Paediatr 2018 ; 107 : 2059–2065. [CrossRef] [PubMed] [Google Scholar]
- EhmannP, LantosJD. Ethical issues with testing and treatment for Krabbe disease. Dev Med Child Neurol 2019 ; 61 : 1358–1361. [CrossRef] [PubMed] [Google Scholar]
- Lee S, Clinard K, Young SP, et al. Evaluation of X-linked adrenoleukodystrophy newborn screening in North Carolina. JAMA Netw Open 2020; 3 : e1920356. [CrossRef] [PubMed] [Google Scholar]
- Barendsen RW, Dijkstra IME, Visser WF et al. Adrenoleukodystrophy newborn screening in the Netherlands (SCAN study): The X-factor. Front Cell Dev Biol 2020; 17 : 499. [Google Scholar]
- DanielY, TurnerC. Newborn sickle cell disease screening using electrospray tandem mass spectrometry. Int J Neonatal Screen 2018 24 ; 4: 35. [CrossRef] [PubMed] [Google Scholar]
- NaubourgP, El OstaM, RageotDet al. A Multicentre pilot study of a two-tier newborn sickle cell disease screening procedure with a first tier based on a fully automated Maldi-Tof Ms platform. Int J Neonatal Screen 2019 ; 23 : 10. [Google Scholar]
- Décret n° 2008–321 du 4 avril 2008 relatif à l’examen des caractéristiques génétiques d’une personne ou à son identification par empreintes génétiques à des fins médicales. https://www.legifrance.gouv.fr/loda/id/JORFTEXT000018606712/. [Google Scholar]
- AudrézetMP, MunckA, ScotetVet al. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: implications for diagnosis, genetic counseling, and mutation-specific therapy. Genet Med 2015 ; 17 : 108–116. [CrossRef] [PubMed] [Google Scholar]
- ThakarMS, HintermeyerMK, GriesMGet al. A Practical approach to newborn screening for severe combined immunodeficiency using the T cell receptor excision circle assay. Front Immunol 2017 ; 8 : 1470. [CrossRef] [PubMed] [Google Scholar]
- TaylorJL, LeeFK, YazdanpanahGKet al. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin Chem 2015 ; 61 : 412–419. [CrossRef] [PubMed] [Google Scholar]
- BoemerF, CabergJH, DidebergVet al. Newborn screening for SMA in Southern Belgium. Neuromuscul Disord 2019 ; 29 : 343–349. [CrossRef] [PubMed] [Google Scholar]
- AudrainMAP, LégerAJC, HémontCAFet al. Newborn screening for severe combined immunodeficiency: analytic and clinical performance of the T cell receptor excision circle assay in France (Depistrec Study). J Clin Immunol 2018 ; 38 : 778–786. [CrossRef] [PubMed] [Google Scholar]
- HolmIA, AgrawalPB, Ceyhan-BirsoyOet al. The BabySeq project: implementing genomic sequencing in newborns. BMC Pediatr 2018 ; 18 : 225. [CrossRef] [PubMed] [Google Scholar]
- Yamaguchi T, Nakamura A, Nakayama K, et al. Targeted next-generation sequencing for congenital hypothyroidism with positive neonatal TSH screening. J Clin Endocrinol Metab 2020; 105 : 308. [Google Scholar]
- Adhikari AN, Gallagher RC, Wang Y, et al. The role of exome sequencing in newborn screening for inborn errors of metabolism. Nat Med 2020; 26 : 1392–7. [CrossRef] [PubMed] [Google Scholar]
- Morava E, Baumgartner M, Patterson M, et al. Newborn screening: to WES or not to WES, that is the question. J Inherit Metab Dis 2020; 43 : 904–5. [CrossRef] [PubMed] [Google Scholar]
- Luginbühl M, Gaugler S. The application of fully automated dried blood spot analysis for liquid chromatography-tandem mass spectrometry using the CAMAG DBS-MS 500 autosampler. Clin Biochem 2020; 82 : 33–9. [CrossRef] [PubMed] [Google Scholar]
- Sanders KA, Gavrilov DK, Oglesbee D, et al. A Comparative effectiveness study of newborn screening methods for four lysosomal storage disorders. Int J Neonatal Screen 2020; 6 : 44. [CrossRef] [PubMed] [Google Scholar]
- Tangeraas T, Sæves I, Klingenberg C, et al. Performance of expanded newborn screening in norway supported by post-analytical bioinformatics tools and rapid second-tier DNA analyses. Int J Neonatal Screen 2020; 6 : 51. [PubMed] [Google Scholar]
- Farriaux JP. Histoire et organisation du programme français de dépistage néonatal systématique (1967–2020). Med Sci (Paris) 2021; 37 : 433–40. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.