Free Access
Issue
Med Sci (Paris)
Volume 37, Number 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Page(s) 507 - 518
Section La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
DOI https://doi.org/10.1051/medsci/2021057
Published online 18 May 2021
  1. Recommandation de la Haute autorité de santé. Évaluation de l’extension du dépistage néonatal à une ou plusieurs erreurs innées du métabolisme par spectrométrie de masse en tandem. 1er volet: déficit en MCAD. Saint-Denis : HAS, 2011. https://www.has-sante.fr/jcms/c_1069254/fr/evaluation-de-l-extension-du-depistage-neonatal-a-une-ou-plusieurs-erreurs-innees-du-metabolisme-par-spectrometrie-de-masse-en-tandem-1er-volet-deficit-en-mcad. [Google Scholar]
  2. Arrêté du 12 novembre 2020 modifiant l’arrêté du 22 février 2018 relatif à l’organisation du programme national de dépistage néonatal recourant à des examens de biologie médicale. https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000042521346. [Google Scholar]
  3. Rapport de la Haute autorité de santé. Dépistage néonatal : quelles maladies dépister ? Paris : HAS, 2020. https://www.has-sante.fr/jcms/p_3149627/fr/depistage-neonatal-quelles-maladies-depister. [Google Scholar]
  4. Saudubray JM, Baumgartner M, Walter J Inborn metabolic diseases: diagnosis and treatment 2016 ; 6th ed. Berlin-Heidelberg Springer [Google Scholar]
  5. Janck JM, Maier EM, Reib DD, et al. The domain-specific and temperature-dependent protein misfolding phenotype of variant medium-chain acyl-CoA dehydrogenase. PLoS One 2014 ; 9 : e107094. [Google Scholar]
  6. Derks TGJ, Boer TS, van Assen A, et al. Neonatal screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in The Netherlands: the importance of enzyme analysis to ascertain true MCAD deficiency. J Inherit Metab Dis 2008 ; 31 : 88–96. [CrossRef] [PubMed] [Google Scholar]
  7. Couce ML, Sanchez-Pintos P, Diogo L, et al. Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency. Orphanet J Rare Dis 2013 ; 8 : 102. [CrossRef] [PubMed] [Google Scholar]
  8. Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003 ; 348 : 2304. [CrossRef] [PubMed] [Google Scholar]
  9. Frazier DM, Millington DS, McCandless SE, et al. The tandem mass spectrometry newborn screening experience in North Carolina: 1997–2005. J Inhertit Metab Dis 2006 ; 29 : 76–85. [Google Scholar]
  10. McHugh DMS, Cameron CA, Abdenur JE, et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project. Genet Med 2011 ; 13 : 230–254. [CrossRef] [PubMed] [Google Scholar]
  11. Jager EA, Kuijpers MM, Bosch AM, et al. A nationwide retrospective observational study of population newborn screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in the Netherlands. J Inherit Metab Dis 2019 ; 42 : 890–897. [CrossRef] [PubMed] [Google Scholar]
  12. Arnold GL, Saavedra-Matiz CA, Galvin-Parton PA, et al. Lack of genotype-phenotype correlations and outcome in MCAD deficiency diagnosed by newborn screening in New York State. Mol Genet Metab 2010 ; 99 : 263–268. [CrossRef] [PubMed] [Google Scholar]
  13. Feillet F, Ogier H, Cheillan D, Aquaviva C, et al. Déficit en acyl-CoA-déshydrogénase des acides gras à chaîne moyenne (MCAD): consensus français pour le dépistage, le diagnostic, et la prise en charge. Arch Pediatr 2012 ; 19 : 184–193. [CrossRef] [PubMed] [Google Scholar]
  14. Wilcken B, Haas M, Joy P, et al. A. Expanded newborn screening: outcome in screened and unscreened patients at age 6 years. Pediatrics 2009 ; 124 : e241–e248. [CrossRef] [PubMed] [Google Scholar]
  15. Wilcken B, Haas M, Joy P, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency: a cohort study. Lancet 2007 ; 369 : 37–42. [CrossRef] [PubMed] [Google Scholar]
  16. Nennstiel-Ratzel U, Arenz S, Maier EM, et al. Reduced incidence of severe metabolic crisis or death in children with medium chain acyl-CoA dehydrogenase deficiency homozygous for c 985A > G identified by neonatal screening. Mol Genet Metab 2005 ; 85 : 157–159. [CrossRef] [PubMed] [Google Scholar]
  17. Anderson DR, Viau K, Botto LD, et al. Clinical and biochemical outcomes of patients with medium-chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab 2020; 129 : 13–9. [CrossRef] [PubMed] [Google Scholar]
  18. Pollitt RJ, Leonard JV. Prospective surveillance study of medium chain acyl-CoA dehydrogenase deficiency in the UK. Arch Dis Child 1998 ; 79 : 116–119. [CrossRef] [PubMed] [Google Scholar]
  19. Derks TG, Reijngoud DJ, Waterham HR, et al. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: clinical presentation and outcome. J Pediatr 2006 ; 148 : 665–670. [CrossRef] [PubMed] [Google Scholar]
  20. Lindner M, Gramer M, Haege G, et al. Efficacy and outcome of expanded newborn screening for metabolic diseases. Report of 10 years from South-West Germany. Orphanet J Rare Dis 2011 ; 6 : 44. [CrossRef] [PubMed] [Google Scholar]
  21. Grosse SD, Thompson JD, Ding Y, Glass M. The use of economic evaluation to inform newborn screening policy decisions: the Washington state experience. Milbank Q 2016 ; 94 : 366–391. [CrossRef] [PubMed] [Google Scholar]
  22. Van der Hilst CS. Deks TGJ, Reijngoud DJ, el al. Cost-effectiveness of neonatal screening for medium chain acyl-CoA dehydrogenase deficiency: the homogeneous population of The Netherlands. J Pediatr 2007 ; 151 : 115–120. [CrossRef] [PubMed] [Google Scholar]
  23. Cipriano LE, Rupar CA, Zaric GS. The cost-effectiveness of expanding newborn screening for up to 21 inherited metabolic disorders using tandem mass spectrometry: results from a decision-analytic model. Value Health 2007 ; 10 : 83–97. [CrossRef] [PubMed] [Google Scholar]
  24. Hamers FF, Rumeau-Pichon C. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France. BMC Pediatr 2012 ; 12 : 60. [CrossRef] [PubMed] [Google Scholar]
  25. Karaceper MD, Khangura SD, Wilson K, et al. Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: a cohort study in Ontario. Canada. Orphanet J Rare Dis 2019 ; 14 : 70. [Google Scholar]
  26. Karaceper MD, Chakraborty P, Coyle D, et al. The health system impact of false positive newborn screening results for medium-chain acyl-CoA dehydrogenase deficiency: a cohort study. Orphanet J Rare Dis 2016 ; 11 : 12. [CrossRef] [PubMed] [Google Scholar]
  27. Malvagia S, Forni G, Ombrone D, et al. Development of strategies to decrease false positive results in newborn screening. Int J Neonatal Screen 2020; 6 : 84. [Google Scholar]
  28. Lund AM, Hougaard DM, Simonsen H, et al. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland: experience and development of a routine program for expanded newborn screening. Mol Genet Metab 2012 ; 107 : 281–293. [CrossRef] [PubMed] [Google Scholar]
  29. Estrella J, Wilcken B, Carpenter K, et al. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis 2014 ; 37 : 881–887. [CrossRef] [PubMed] [Google Scholar]
  30. Matern D, Tortorelli S, Oglesbee D, et al. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis 2007 ; 30 : 585–592. [CrossRef] [PubMed] [Google Scholar]
  31. Okun JG, Gan-Schreier H, Ben-Omran T, et al. Newborn screening for vitamin b 6 non-responsive classical homocystinuria: systematical evaluation of a two-tier strategy. JIMD Reports 2017 ; 32 : 87–94. [CrossRef] [PubMed] [Google Scholar]
  32. Boy N, Mengler K, Thimm E, et al. Newborn screening: a disease-changing intervention for glutaric aciduria type 1. Ann Neurol 2018 ; 83 : 970–979. [CrossRef] [PubMed] [Google Scholar]
  33. Carling RS, Burden D, Hutton I, et al. Introduction of a simple second tier screening test for c5 isobars in dried blood spots: reducing the false positive rate for isovaleric acidaemia in expanded newborn screening. JIMD Reports 2018 ; 38 : 75–80. [CrossRef] [PubMed] [Google Scholar]
  34. Schlune A, Riederer A, Mayatepek E, Ensenauer R. Aspects of newborn screening in isovaleric acidemia. Int J Neonatal Screen 2018 ; 29 : 7. [Google Scholar]
  35. Immonem T, Turanlahti M, Paganus A, et al. Earlier diagnosis and strict diets improve the survival rate and clinical course of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Acta Paediatr 2016 ; 105 : 549–554. [CrossRef] [PubMed] [Google Scholar]
  36. Lotz-Havla AS, Roschinger W, Schiergens W, et al. Aspects of newborn screening in isovaleric acidemia. Orphanet J Rare Dis 2018 ; 13 : 122. [CrossRef] [PubMed] [Google Scholar]
  37. Smon A, Lampret BR, Groselj U, et al. Next generation sequencing as a follow-up test in an expanded newborn screening program. Clin Biochem 2018 ; 52 : 48–55. [CrossRef] [PubMed] [Google Scholar]
  38. Yang Y, Wang L, Wang B, et al. Application of next-generation sequencing following tandem mass spectrometry to expand newborn screening for inborn errors of metabolism: a multicenter study. Front Genet 2019 ; 10 : 86. [CrossRef] [PubMed] [Google Scholar]
  39. Marsden D, Bedrosian CL, Vockley J. Impact of newborn screening on the reported incidence and clinical outcomes associated with medium- and long-chain fatty acid oxidation disorders. Genet Med 2021; https://doi.org/10.1038/s41436-020-01070-0. [PubMed] [Google Scholar]
  40. Munck A, Gauthereau V, Czernichow P. Organisation du dépistage néonatal en France. Med Sci (Paris) 2021; 37 : 457–60. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Loeber JG, Platis D, Zetterström RH, Schielen PJCI. Dépistage néonatal en Europe : évolution depuis, et analyse de la situation actuelle par la Société internationale de dépistage néonatal. Med Sci (Paris) 2010 ; 2021 : 37 441–456. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.