Open Access
Med Sci (Paris)
Volume 37, Number 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
Page(s) 549 - 552
Section Le Magazine
Published online 18 May 2021
  1. Ghosn J, Taiwo B, Seedat S, et al. HIV. Lancet 2018 ; 392 : 685–697. [Google Scholar]
  2. Bester SM, Wei G, Zhao H, et al. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science 2020; 370 : 360–4. [Google Scholar]
  3. Link JO, Rhee MS, Tse WC, et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020; 584 : 614–8. [Google Scholar]
  4. Ni T, Gerard S, Zhao G, et al. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol 2020; 27 : 855–62. [Google Scholar]
  5. Christensen DE, Ganser-Pornillos BK, Johnson JS, et al. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science 2020; 370. [Google Scholar]
  6. Burdick RC, Li C, Munshi M, et al. HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci USA 2020; 117 : 5486–93. [Google Scholar]
  7. Dharan A, Bachmann N, Talley S, et al. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat Microbiol 2020; 5 : 1088–95. [Google Scholar]
  8. Selyutina A, Persaud M, Lee K, et al. Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell Rep 2020; 32 : 108201. [Google Scholar]
  9. Rensen E, Mueller F, Scoca V, et al. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. EMBO J 2021; 40 : e105247. [Google Scholar]
  10. Müller TG, Zila V, Peters K, et al. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. bioRxiv 2021 (soumis pour publication). [Google Scholar]
  11. Ndung’u T, McCune JM, Deeks SG. Why and where an HIV cure is needed and how it might be achieved. Nature 2019; 576 : 397–405. [Google Scholar]
  12. Nyaku AN, Kelly SG, Taiwo BO. Long-acting antiretrovirals: Where are we now?. Curr HIV/AIDS Rep 2017 ; 14 : 63–71. [Google Scholar]
  13. Mattei S, Glass B, Hagen WJ, et al. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 2016 ; 354 : 1434–1437. [Google Scholar]
  14. Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 2015 ; 13 : 471–483. [Google Scholar]
  15. James LC, Jacques DA. The human immunodeficiency virus capsid is more than just a genome package. Annu Rev Virol 2018 ; 5 : 209–225. [Google Scholar]
  16. Carnes SK, Sheehan JH, Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr Opin HIV AIDS 2018 ; 13 : 359–365. [Google Scholar]
  17. Yant SR, Mulato A, Hansen D, et al. A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nat Med 2019 ; 25 : 1377–1384. [Google Scholar]
  18. Arhel N.. Revisiting HIV-1 uncoating. Retrovirology 2010 ; 7 : 96. [Google Scholar]
  19. Fernandez J, Machado AK, Lyonnais S, et al. Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating. Nat Microbiol 2019 ; 4 : 1840–1850. [Google Scholar]
  20. Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci 2018 ; 75 : 2491–2507. [Google Scholar]
  21. Zila V, Margiotta E, Turonova B, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021; 184 : 1032–46. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.