Open Access
Numéro |
Med Sci (Paris)
Volume 37, Numéro 5, Mai 2021
La révolution médicale du dépistage néonatal – Une aventure médicale scientifique et sociétale
|
|
---|---|---|
Page(s) | 549 - 552 | |
Section | Le Magazine | |
DOI | https://doi.org/10.1051/medsci/2021050 | |
Publié en ligne | 18 mai 2021 |
- Ghosn J, Taiwo B, Seedat S, et al. HIV. Lancet 2018 ; 392 : 685–697. [Google Scholar]
- Bester SM, Wei G, Zhao H, et al. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science 2020; 370 : 360–4. [Google Scholar]
- Link JO, Rhee MS, Tse WC, et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020; 584 : 614–8. [Google Scholar]
- Ni T, Gerard S, Zhao G, et al. Intrinsic curvature of the HIV-1 CA hexamer underlies capsid topology and interaction with cyclophilin A. Nat Struct Mol Biol 2020; 27 : 855–62. [Google Scholar]
- Christensen DE, Ganser-Pornillos BK, Johnson JS, et al. Reconstitution and visualization of HIV-1 capsid-dependent replication and integration in vitro. Science 2020; 370. [Google Scholar]
- Burdick RC, Li C, Munshi M, et al. HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci USA 2020; 117 : 5486–93. [Google Scholar]
- Dharan A, Bachmann N, Talley S, et al. Nuclear pore blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat Microbiol 2020; 5 : 1088–95. [Google Scholar]
- Selyutina A, Persaud M, Lee K, et al. Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell Rep 2020; 32 : 108201. [Google Scholar]
- Rensen E, Mueller F, Scoca V, et al. Clustering and reverse transcription of HIV-1 genomes in nuclear niches of macrophages. EMBO J 2021; 40 : e105247. [Google Scholar]
- Müller TG, Zila V, Peters K, et al. HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. bioRxiv 2021 (soumis pour publication). [Google Scholar]
- Ndung’u T, McCune JM, Deeks SG. Why and where an HIV cure is needed and how it might be achieved. Nature 2019; 576 : 397–405. [Google Scholar]
- Nyaku AN, Kelly SG, Taiwo BO. Long-acting antiretrovirals: Where are we now?. Curr HIV/AIDS Rep 2017 ; 14 : 63–71. [Google Scholar]
- Mattei S, Glass B, Hagen WJ, et al. The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 2016 ; 354 : 1434–1437. [Google Scholar]
- Campbell EM, Hope TJ. HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 2015 ; 13 : 471–483. [Google Scholar]
- James LC, Jacques DA. The human immunodeficiency virus capsid is more than just a genome package. Annu Rev Virol 2018 ; 5 : 209–225. [Google Scholar]
- Carnes SK, Sheehan JH, Aiken C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr Opin HIV AIDS 2018 ; 13 : 359–365. [Google Scholar]
- Yant SR, Mulato A, Hansen D, et al. A highly potent long-acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nat Med 2019 ; 25 : 1377–1384. [Google Scholar]
- Arhel N.. Revisiting HIV-1 uncoating. Retrovirology 2010 ; 7 : 96. [Google Scholar]
- Fernandez J, Machado AK, Lyonnais S, et al. Transportin-1 binds to the HIV-1 capsid via a nuclear localization signal and triggers uncoating. Nat Microbiol 2019 ; 4 : 1840–1850. [Google Scholar]
- Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci 2018 ; 75 : 2491–2507. [Google Scholar]
- Zila V, Margiotta E, Turonova B, et al. Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell 2021; 184 : 1032–46. [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.