Issue
Med Sci (Paris)
Volume 37, Number 1, Janvier 2021
Nos jeunes pousses ont du talent !
Page(s) 100 - 102
Section Partenariat médecine/sciences - Écoles doctorales - Masters
DOI https://doi.org/10.1051/medsci/2020264
Published online 25 January 2021
  1. Goossens G.. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts 2017 ; 10 : 207–215. [CrossRef] [PubMed] [Google Scholar]
  2. Turinsky J, O’Sullivan DM, Bayly BP. 1,2-diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 1990 ; 265 : 16880–16885. [CrossRef] [PubMed] [Google Scholar]
  3. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996 ; 97 : 2859–2865. [CrossRef] [PubMed] [Google Scholar]
  4. Turpin SM, Lancaster GI, Darby I, et al. Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab 2006 ; 291 : 1341–1350. [CrossRef] [Google Scholar]
  5. Mullen TD, Hannun YA, Obeid LM. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem J 2012 ; 441 : 789–802. [CrossRef] [PubMed] [Google Scholar]
  6. Park M, Kaddai V, Ching J, et al. A role for ceramides, but not sphingomyelins, as antagonists of insulin signaling and mitochondrial metabolism in C2C12 myotubes. J Biol Chem 2016 ; 291 : 23978–23988. [CrossRef] [PubMed] [Google Scholar]
  7. Turpin-Nolan SM, Hammerschmidt P, Chen W, et al. CerS1-derived C18:0 ceramide in skeletal muscle promotes obesity-induced insulin resistance. Cell Rep 2019 ; 26 : 1–10. [CrossRef] [PubMed] [Google Scholar]
  8. Schwenk F, Baron U, Rajewsky K. A Cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res 1995 ; 23 : 5080–5081. [CrossRef] [PubMed] [Google Scholar]
  9. Babinet C.. Un nouveau pas dans l’utilisation du système Cre-LoxP chez les cellules souches embryonnaires de souris : la création de remaniements chromosomiques. Med Sci (Paris) 1995 ; 11 : 1154–1157. [CrossRef] [Google Scholar]
  10. Abdalla MM. Central and peripheral control of food intake. Endocr Regul 2017 ; 51 : 52–70. [CrossRef] [PubMed] [Google Scholar]
  11. Laperrousaz E, Moullé VS, Denis RG, et al. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice. Diabetologia 2017 ; 60 : 1314–1324. [CrossRef] [PubMed] [Google Scholar]
  12. Könner AC, Janoschek R, Plum L, et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 2007 ; 5 : 438–449. [CrossRef] [PubMed] [Google Scholar]
  13. BonDurant LD, Ameka M, Naber MC, et al. FGF21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab 2017 ; 25 : 935–944. [CrossRef] [PubMed] [Google Scholar]
  14. Turner N, Lim XY, Toop HD, et al. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat Commun 2018 ; 9 : 3165. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.