Open Access
Med Sci (Paris)
Volume 37, Number 1, Janvier 2021
Page(s) 68 - 76
Section M/S Revues
Published online 25 January 2021
  1. Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci 2010 ; 33 : 550–558. [CrossRef] [PubMed] [Google Scholar]
  2. Talagas M, Lebonvallet N, Berthod F, Misery L. Cutaneous nociception: role of keratinocytes. Exp Dermatol 2019 ; 28 : 1466–1469. [CrossRef] [PubMed] [Google Scholar]
  3. Meixiong J, Basso L, Dong X, Gaudenzio N. Nociceptor-mast cell sensory clusters as regulators of skin homeostasis. Trends Neurosci 2020; 43 : 130–2. [CrossRef] [PubMed] [Google Scholar]
  4. Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013 ; 501 : 52–57. [CrossRef] [PubMed] [Google Scholar]
  5. Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from Cd301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 2015 ; 43 : 515–526. [CrossRef] [PubMed] [Google Scholar]
  6. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010 ; 33 : 464–478. [CrossRef] [PubMed] [Google Scholar]
  7. Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014 ; 510 : 157–161. [CrossRef] [PubMed] [Google Scholar]
  8. Kolter J, Feuerstein R, Zeis P, et al. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity 2019 ; 50 : 1482–1497. [CrossRef] [PubMed] [Google Scholar]
  9. Janelsins BM, Sumpter TL, Tkacheva OA, et al. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12. Blood 2013 ; 121 : 2923–2933. [CrossRef] [Google Scholar]
  10. Ding W, Stohl LL, Xu L, et al. Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to cd4+ t cells toward a th17 response. J Immunol 2016 ; 196 : 2181–2194. [CrossRef] [PubMed] [Google Scholar]
  11. Blais M, Mottier L, Germain MA, et al. Sensory neurons accelerate skin reepithelialization via substance P in an innervated tissue-engineered wound healing model. Tissue Eng Part A 2014 ; 20 : 2180–2188. [CrossRef] [PubMed] [Google Scholar]
  12. Cheret J, Lebonvallet N, Buhe V, et al. Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 2014 ; 74 : 193–203. [CrossRef] [PubMed] [Google Scholar]
  13. Doss AL, Smith PG. Langerhans cells regulate cutaneous innervation density and mechanical sensitivity in mouse footpad. Neurosci Lett 2014 ; 578 : 55–60. [CrossRef] [PubMed] [Google Scholar]
  14. Dainichi T, Kitoh A, Otsuka A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018 ; 19 : 1286–1298. [CrossRef] [PubMed] [Google Scholar]
  15. Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med 2017 ; 214 : 1529–1546. [CrossRef] [PubMed] [Google Scholar]
  16. Leyva-Castillo JM, Hener P, Michea P, et al. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun 2013 ; 4 : 2847. [CrossRef] [Google Scholar]
  17. Wilson SR, The L, Batia LM, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013 ; 155 : 285–295. [CrossRef] [PubMed] [Google Scholar]
  18. La Misery L.. TSLP, clé du prurit dans la dermatite atopique. Med Sci (Paris) 2014 ; 30 : 142–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Cevikbas F, Wang X, Akiyama T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 2014 ; 133 : 448–460. [CrossRef] [PubMed] [Google Scholar]
  20. Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 2017 ; 171 : 217–228. [CrossRef] [PubMed] [Google Scholar]
  21. Paller AS, Kabashima K, Bieber T. Therapeutic pipeline for atopic dermatitis: end of the drought?. J Allergy Clin Immunol 2017 ; 140 : 633–643. [CrossRef] [PubMed] [Google Scholar]
  22. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007 ; 445 : 866–873. [CrossRef] [PubMed] [Google Scholar]
  23. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol 2007 ; 119 : 1210–1217. [CrossRef] [PubMed] [Google Scholar]
  24. Therene C, Brenaut E, Barnetche T, Misery L. Efficacy of systemic treatments of psoriasis on pruritus: a systemic literature review and meta-analysis. J Invest Dermatol 2018 ; 138 : 38–45. [CrossRef] [PubMed] [Google Scholar]
  25. Dewing SB. Remission of psoriasis associated with cutaneous nerve section. Arch Dermatol 1971 ; 104 : 220–221. [CrossRef] [PubMed] [Google Scholar]
  26. Ostrowski SM, Belkadi A, Loyd CM, et al. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011 ; 131 : 1530–1538. [CrossRef] [PubMed] [Google Scholar]
  27. Cohen JA, Edwards NT, Liu AW, et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 2019 ; 178 : 919–932. [CrossRef] [PubMed] [Google Scholar]
  28. Gudjonsson JE, Johnston A, Dyson M, et al. Mouse models of psoriasis. J Invest Dermatol 2007 ; 127 : 1292–1308. [CrossRef] [PubMed] [Google Scholar]
  29. Blunder S, Ruhl R, Moosbrugger-Martinz V, et al. Alterations in epidermal eicosanoid metabolism contribute to inflammation and impaired late differentiation in flg-mutated atopic dermatitis. J Invest Dermatol 2017 ; 137 : 706–715. [CrossRef] [PubMed] [Google Scholar]
  30. Roggenkamp D, Falkner S, Stab F, et al. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol 2012 ; 132 : 1892–1900. [CrossRef] [PubMed] [Google Scholar]
  31. Jean J, Lapointe M, Soucy J, Pouliot R. Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci 2009 ; 53 : 19–25. [CrossRef] [PubMed] [Google Scholar]
  32. Lebonvallet N, Pennec JP, Le Gall-Ianotto C, et al. Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a re-innervated organotypic human skin model. Exp Dermatol 2014 ; 23 : 73–75. [CrossRef] [PubMed] [Google Scholar]
  33. Beaulieu MM, Tremblay PL, Berthod F. Modélisation in vitro du système nerveux par génie tissulaire. Med Sci (Paris) 2009 ; 25 : 288–292. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Vidal SEL, Tamamoto KA, Nguyen H, et al. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials 2019 ; 198 : 194–203. [CrossRef] [PubMed] [Google Scholar]
  35. Muller Q, Beaudet MJ, De Serres-Berard T, et al. Development of an innervated tissue-engineered skin with human sensory neurons and Schwann cells differentiated from iPS cells. Acta Biomater 2018 ; 82 : 93–101. [CrossRef] [Google Scholar]
  36. Dezutter-Dambuyant C, Black A, Bechetoille N, et al. Evolutive skin reconstructions: from the dermal collagen-glycosaminoglycan-chitosane substrate to an immunocompetent reconstructed skin. Biomed Mater Eng 2006 ; 16(4 suppl): S85–S94. [PubMed] [Google Scholar]
  37. Bechetoille N, Andre V, Valladeau J, et al. Mixed Langerhans cell and interstitial/dermal dendritic cell subsets emanating from monocytes in Th2-mediated inflammatory conditions respond differently to proinflammatory stimuli. J Leukoc Biol 2006 ; 80 : 45–58. [CrossRef] [Google Scholar]
  38. Ouwehand K, Spiekstra SW, Waaijman T, et al. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol 2011 ; 90 : 1027–1033. [CrossRef] [Google Scholar]
  39. Linde N, Gutschalk CM, Hoffmann C, et al. Integrating macrophages into organotypic co-cultures: a 3D in vitro model to study tumor-associated macrophages. PLoS One 2012 ; 7 : e40058. [CrossRef] [Google Scholar]
  40. Bechetoille N, Vachon H, Gaydon A, et al. A new organotypic model containing dermal-type macrophages. Exp Dermatol 2011 ; 20 : 1035–1037. [CrossRef] [PubMed] [Google Scholar]
  41. Guironnet G, Dezutter-Dambuyant C, Gaudillere A, et al. Phenotypic and functional outcome of human monocytes or monocyte-derived dendritic cells in a dermal equivalent. J Invest Dermatol 2001 ; 116 : 933–939. [CrossRef] [PubMed] [Google Scholar]
  42. Pageon H, Zucchi H, Rousset F, et al. Glycation stimulates cutaneous monocyte differentiation in reconstructed skin in vitro. Mech Ageing Dev 2017 ; 162 : 18–26. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.