Organoïdes
Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 1, Janvier 2021
Organoïdes
Page(s) 68 - 76
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020260
Publié en ligne 25 janvier 2021
  1. Davidson S, Giesler GJ. The multiple pathways for itch and their interactions with pain. Trends Neurosci 2010 ; 33 : 550–558. [CrossRef] [PubMed] [Google Scholar]
  2. Talagas M, Lebonvallet N, Berthod F, Misery L. Cutaneous nociception: role of keratinocytes. Exp Dermatol 2019 ; 28 : 1466–1469. [CrossRef] [PubMed] [Google Scholar]
  3. Meixiong J, Basso L, Dong X, Gaudenzio N. Nociceptor-mast cell sensory clusters as regulators of skin homeostasis. Trends Neurosci 2020; 43 : 130–2. [CrossRef] [PubMed] [Google Scholar]
  4. Chiu IM, Heesters BA, Ghasemlou N, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 2013 ; 501 : 52–57. [CrossRef] [PubMed] [Google Scholar]
  5. Kashem SW, Riedl MS, Yao C, et al. Nociceptive sensory fibers drive interleukin-23 production from Cd301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 2015 ; 43 : 515–526. [CrossRef] [PubMed] [Google Scholar]
  6. Palucka K, Banchereau J, Mellman I. Designing vaccines based on biology of human dendritic cell subsets. Immunity 2010 ; 33 : 464–478. [CrossRef] [PubMed] [Google Scholar]
  7. Riol-Blanco L, Ordovas-Montanes J, Perro M, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 2014 ; 510 : 157–161. [CrossRef] [PubMed] [Google Scholar]
  8. Kolter J, Feuerstein R, Zeis P, et al. A subset of skin macrophages contributes to the surveillance and regeneration of local nerves. Immunity 2019 ; 50 : 1482–1497. [CrossRef] [PubMed] [Google Scholar]
  9. Janelsins BM, Sumpter TL, Tkacheva OA, et al. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12. Blood 2013 ; 121 : 2923–2933. [CrossRef] [Google Scholar]
  10. Ding W, Stohl LL, Xu L, et al. Calcitonin gene-related peptide-exposed endothelial cells bias antigen presentation to cd4+ t cells toward a th17 response. J Immunol 2016 ; 196 : 2181–2194. [CrossRef] [PubMed] [Google Scholar]
  11. Blais M, Mottier L, Germain MA, et al. Sensory neurons accelerate skin reepithelialization via substance P in an innervated tissue-engineered wound healing model. Tissue Eng Part A 2014 ; 20 : 2180–2188. [CrossRef] [PubMed] [Google Scholar]
  12. Cheret J, Lebonvallet N, Buhe V, et al. Influence of sensory neuropeptides on human cutaneous wound healing process. J Dermatol Sci 2014 ; 74 : 193–203. [CrossRef] [PubMed] [Google Scholar]
  13. Doss AL, Smith PG. Langerhans cells regulate cutaneous innervation density and mechanical sensitivity in mouse footpad. Neurosci Lett 2014 ; 578 : 55–60. [CrossRef] [PubMed] [Google Scholar]
  14. Dainichi T, Kitoh A, Otsuka A, et al. The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. Nat Immunol 2018 ; 19 : 1286–1298. [CrossRef] [PubMed] [Google Scholar]
  15. Pattarini L, Trichot C, Bogiatzi S, et al. TSLP-activated dendritic cells induce human T follicular helper cell differentiation through OX40-ligand. J Exp Med 2017 ; 214 : 1529–1546. [CrossRef] [PubMed] [Google Scholar]
  16. Leyva-Castillo JM, Hener P, Michea P, et al. Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun 2013 ; 4 : 2847. [CrossRef] [Google Scholar]
  17. Wilson SR, The L, Batia LM, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013 ; 155 : 285–295. [CrossRef] [PubMed] [Google Scholar]
  18. La Misery L.. TSLP, clé du prurit dans la dermatite atopique. Med Sci (Paris) 2014 ; 30 : 142–144. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  19. Cevikbas F, Wang X, Akiyama T, et al. A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 2014 ; 133 : 448–460. [CrossRef] [PubMed] [Google Scholar]
  20. Oetjen LK, Mack MR, Feng J, et al. Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch. Cell 2017 ; 171 : 217–228. [CrossRef] [PubMed] [Google Scholar]
  21. Paller AS, Kabashima K, Bieber T. Therapeutic pipeline for atopic dermatitis: end of the drought?. J Allergy Clin Immunol 2017 ; 140 : 633–643. [CrossRef] [PubMed] [Google Scholar]
  22. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature 2007 ; 445 : 866–873. [CrossRef] [PubMed] [Google Scholar]
  23. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol 2007 ; 119 : 1210–1217. [CrossRef] [PubMed] [Google Scholar]
  24. Therene C, Brenaut E, Barnetche T, Misery L. Efficacy of systemic treatments of psoriasis on pruritus: a systemic literature review and meta-analysis. J Invest Dermatol 2018 ; 138 : 38–45. [CrossRef] [PubMed] [Google Scholar]
  25. Dewing SB. Remission of psoriasis associated with cutaneous nerve section. Arch Dermatol 1971 ; 104 : 220–221. [CrossRef] [PubMed] [Google Scholar]
  26. Ostrowski SM, Belkadi A, Loyd CM, et al. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol 2011 ; 131 : 1530–1538. [CrossRef] [PubMed] [Google Scholar]
  27. Cohen JA, Edwards NT, Liu AW, et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 2019 ; 178 : 919–932. [CrossRef] [PubMed] [Google Scholar]
  28. Gudjonsson JE, Johnston A, Dyson M, et al. Mouse models of psoriasis. J Invest Dermatol 2007 ; 127 : 1292–1308. [CrossRef] [PubMed] [Google Scholar]
  29. Blunder S, Ruhl R, Moosbrugger-Martinz V, et al. Alterations in epidermal eicosanoid metabolism contribute to inflammation and impaired late differentiation in flg-mutated atopic dermatitis. J Invest Dermatol 2017 ; 137 : 706–715. [CrossRef] [PubMed] [Google Scholar]
  30. Roggenkamp D, Falkner S, Stab F, et al. Atopic keratinocytes induce increased neurite outgrowth in a coculture model of porcine dorsal root ganglia neurons and human skin cells. J Invest Dermatol 2012 ; 132 : 1892–1900. [CrossRef] [PubMed] [Google Scholar]
  31. Jean J, Lapointe M, Soucy J, Pouliot R. Development of an in vitro psoriatic skin model by tissue engineering. J Dermatol Sci 2009 ; 53 : 19–25. [CrossRef] [PubMed] [Google Scholar]
  32. Lebonvallet N, Pennec JP, Le Gall-Ianotto C, et al. Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a re-innervated organotypic human skin model. Exp Dermatol 2014 ; 23 : 73–75. [CrossRef] [PubMed] [Google Scholar]
  33. Beaulieu MM, Tremblay PL, Berthod F. Modélisation in vitro du système nerveux par génie tissulaire. Med Sci (Paris) 2009 ; 25 : 288–292. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  34. Vidal SEL, Tamamoto KA, Nguyen H, et al. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components. Biomaterials 2019 ; 198 : 194–203. [CrossRef] [PubMed] [Google Scholar]
  35. Muller Q, Beaudet MJ, De Serres-Berard T, et al. Development of an innervated tissue-engineered skin with human sensory neurons and Schwann cells differentiated from iPS cells. Acta Biomater 2018 ; 82 : 93–101. [CrossRef] [Google Scholar]
  36. Dezutter-Dambuyant C, Black A, Bechetoille N, et al. Evolutive skin reconstructions: from the dermal collagen-glycosaminoglycan-chitosane substrate to an immunocompetent reconstructed skin. Biomed Mater Eng 2006 ; 16(4 suppl): S85–S94. [PubMed] [Google Scholar]
  37. Bechetoille N, Andre V, Valladeau J, et al. Mixed Langerhans cell and interstitial/dermal dendritic cell subsets emanating from monocytes in Th2-mediated inflammatory conditions respond differently to proinflammatory stimuli. J Leukoc Biol 2006 ; 80 : 45–58. [CrossRef] [Google Scholar]
  38. Ouwehand K, Spiekstra SW, Waaijman T, et al. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration. J Leukoc Biol 2011 ; 90 : 1027–1033. [CrossRef] [Google Scholar]
  39. Linde N, Gutschalk CM, Hoffmann C, et al. Integrating macrophages into organotypic co-cultures: a 3D in vitro model to study tumor-associated macrophages. PLoS One 2012 ; 7 : e40058. [CrossRef] [Google Scholar]
  40. Bechetoille N, Vachon H, Gaydon A, et al. A new organotypic model containing dermal-type macrophages. Exp Dermatol 2011 ; 20 : 1035–1037. [CrossRef] [PubMed] [Google Scholar]
  41. Guironnet G, Dezutter-Dambuyant C, Gaudillere A, et al. Phenotypic and functional outcome of human monocytes or monocyte-derived dendritic cells in a dermal equivalent. J Invest Dermatol 2001 ; 116 : 933–939. [CrossRef] [PubMed] [Google Scholar]
  42. Pageon H, Zucchi H, Rousset F, et al. Glycation stimulates cutaneous monocyte differentiation in reconstructed skin in vitro. Mech Ageing Dev 2017 ; 162 : 18–26. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.