Open Access
Numéro
Med Sci (Paris)
Volume 37, Numéro 1, Janvier 2021
Page(s) 59 - 67
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020253
Publié en ligne 25 janvier 2021
  1. Butt A, Verkhratsky A. Neuroglia: realising their true potential. Brain Neurosci Adv 2018 ; 2 : 2398212818817495. [CrossRef] [PubMed] [Google Scholar]
  2. Allen NJ, Lyons DA. Glia as architects of central nervous system formation and function. Science 2018 ; 362 : 181–185. [Google Scholar]
  3. Hirbec H, Deglon N, Foo LC, et al. Emerging technologies to study glial cells. Glia 2020; 68 : 1692–728. [CrossRef] [PubMed] [Google Scholar]
  4. Barres BA, Hart IK, Coles HS, et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 1992 ; 70 : 31–46. [CrossRef] [PubMed] [Google Scholar]
  5. Bohlen CJ, Bennett FC, Tucker AF, et al. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 2017 ; 94(759–73): e8. [CrossRef] [Google Scholar]
  6. Hu BY, Du ZW, Zhang SC. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc 2009 ; 4 : 1614–1622. [CrossRef] [PubMed] [Google Scholar]
  7. Krencik R, Zhang SC. Directed differentiation of functional astroglial subtypes from human pluripotent stem cells. Nat Protoc 2011 ; 6 : 1710–1717. [CrossRef] [PubMed] [Google Scholar]
  8. Muffat J, Li Y, Yuan B, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 2016 ; 22 : 1358–1367. [CrossRef] [PubMed] [Google Scholar]
  9. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013 ; 501 : 373–379. [CrossRef] [PubMed] [Google Scholar]
  10. Korhonen P, Malm T, White AR. 3D human brain cell models: new frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 2018 ; 120 : 191–199. [CrossRef] [PubMed] [Google Scholar]
  11. Blessing D, Deglon N. Adeno-associated virus and lentivirus vectors: a refined toolkit for the central nervous system. Curr Opin Virol 2016 ; 21 : 61–66. [CrossRef] [PubMed] [Google Scholar]
  12. Palfi S, Gurruchaga JM, Lepetit H, et al. Long-term follow-up of a phase i/ii study of prosavin, a lentiviral vector gene therapy for parkinson’s disease. Hum Gene Ther Clin Dev 2018 ; 29 : 148–155. [CrossRef] [Google Scholar]
  13. Yu X, Nagai J, Khakh BS. Improved tools to study astrocytes. Nat Rev Neurosci 2020; 21 : 121–38. [CrossRef] [PubMed] [Google Scholar]
  14. Fuger P, Hefendehl JK, Veeraraghavalu K, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci 2017 ; 20 : 1371–1376. [CrossRef] [PubMed] [Google Scholar]
  15. Hill RA, Li AM, Grutzendler J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat Neurosci 2018 ; 21 : 683–695. [CrossRef] [PubMed] [Google Scholar]
  16. Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annu Rev Neurosci 2011 ; 34 : 389–412. [CrossRef] [PubMed] [Google Scholar]
  17. Goshen I.. The optogenetic revolution in memory research. Trends Neurosci 2014 ; 37 : 511–522. [CrossRef] [PubMed] [Google Scholar]
  18. Gourine AV, Kasymov V, Marina N, et al. Astrocytes control breathing through pH-dependent release of ATP. Science 2010 ; 329 : 571–575. [CrossRef] [Google Scholar]
  19. Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci USA 2016 ; 113 : E2675–E2684. [CrossRef] [Google Scholar]
  20. Sweeney P, Qi Y, Xu Z, Yang Y. Activation of hypothalamic astrocytes suppresses feeding without altering emotional states. Glia 2016 ; 64 : 2263–2273. [CrossRef] [PubMed] [Google Scholar]
  21. Roth BL. DREADDs for Neuroscientists. Neuron 2016 ; 89 : 683–694. [CrossRef] [PubMed] [Google Scholar]
  22. Adamsky A, Kol A, Kreisel T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 2018 ; 174(59–71): e14. [CrossRef] [PubMed] [Google Scholar]
  23. Martin-Fernandez M, Jamison S, Robin LM, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017 ; 20 : 1540–1548. [CrossRef] [PubMed] [Google Scholar]
  24. Bull C, Freitas KC, Zou S, et al. Rat nucleus accumbens core astrocytes modulate reward and the motivation to self-administer ethanol after abstinence. Neuropsychopharmacology 2014 ; 39 : 2835–2845. [CrossRef] [PubMed] [Google Scholar]
  25. Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014 ; 34 : 11929–11947. [CrossRef] [PubMed] [Google Scholar]
  26. Hedlund E, Deng Q. Single-cell RNA sequencing: technical advancements and biological applications. Mol Aspects Med 2018 ; 59 : 36–46. [CrossRef] [PubMed] [Google Scholar]
  27. Sala Frigerio C, Wolfs L, Fattorelli N, et al. The major risk factors for alzheimer’s disease: age, sex, and genes modulate the microglia response to abeta plaques. Cell Rep 2019; 27 : 1293–306 e6. [CrossRef] [PubMed] [Google Scholar]
  28. Levy E, Slavov N. Single cell protein analysis for systems biology. Essays Biochem 2018 ; 62 : 595–605. [CrossRef] [PubMed] [Google Scholar]
  29. Sharma K, Schmitt S, Bergner CG, et al. Cell type- and brain region-resolved mouse brain proteome. Nat Neurosci 2015 ; 18 : 1819–1831. [CrossRef] [PubMed] [Google Scholar]
  30. Boza-Serrano A, Yang Y, Paulus A, Deierborg T. Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer’s disease mouse model 5xFAD. Sci Rep 2018 ; 8 : 1550. [CrossRef] [PubMed] [Google Scholar]
  31. Brodin P.. The biology of the cell - insights from mass cytometry. FEBS J 2019 ; 286 : 1514–1522. [CrossRef] [PubMed] [Google Scholar]
  32. Bottcher C, Schlickeiser S, Sneeboer MAM, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019 ; 22 : 78–90. [CrossRef] [PubMed] [Google Scholar]
  33. Strell C, Hilscher MM, Laxman N, et al. Placing RNA in context and space - methods for spatially resolved transcriptomics. FEBS J 2019 ; 286 : 1468–1481. [CrossRef] [PubMed] [Google Scholar]
  34. Poulopoulos A, Murphy AJ, Ozkan A, et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 2019 ; 565 : 356–360. [CrossRef] [PubMed] [Google Scholar]
  35. Moller T, Boddeke HW. Glial cells as drug targets: What does it take?. Glia 2016 ; 64 : 1742–1754. [CrossRef] [PubMed] [Google Scholar]
  36. Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol 2018 ; 78 : 136–151. [CrossRef] [PubMed] [Google Scholar]
  37. Aiello M, Cavaliere C, Fiorenza D, et al. Neuroinflammation in neurodegenerative diseases: current multi-modal imaging studies and future opportunities for hybrid PET/MRI. Neuroscience 2018 ; 403 : 125–135. [CrossRef] [Google Scholar]
  38. Barros LF, Bolanos JP, Bonvento G, et al. Current technical approaches to brain energy metabolism. Glia 2018 ; 66 : 1138–1159. [CrossRef] [PubMed] [Google Scholar]
  39. Valori CF, Guidotti G, Brambilla L, Rossi D. Astrocytes: emerging therapeutic targets in neurological disorders. Trends Mol Med 2019 ; 25 : 750–759. [CrossRef] [PubMed] [Google Scholar]
  40. Qian H, Kang X, Hu J, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020; 582 : 550–6. [CrossRef] [PubMed] [Google Scholar]
  41. Zhou H, Su J, Hu X, et al. Glia-to-neuron conversion by crispr-casrx alleviates symptoms of neurological disease in mice. Cell 2020; 181 : 590–603 e16. [CrossRef] [PubMed] [Google Scholar]
  42. Elsayed M, Magistretti PJ. A New outlook on mental illnesses: glial involvement beyond the glue. Front Cell neurosci 2015 ; 9 : 468. [CrossRef] [Google Scholar]
  43. Agid Y, Fan X. L’autre moitié du cerveau, les cellules gliales. Med Sci (Paris) 2019 ; 35 : 199–200. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  44. Agid Y, Magistretti P. L’homme glial 2018 ; Paris: Odile Jacob [Google Scholar]
  45. Zalc B, Rosier F. La myéline : le turbo du cerveau 2016 ; Paris:Odile Jacob [Google Scholar]
  46. Jordan B. CRISPR : le Nobel, enfin… Med Sci (Paris) 2021; 37 : 77–80. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.