Rétine
Open Access
Issue
Med Sci (Paris)
Volume 36, Number 11, Novembre 2020
Rétine
Page(s) 1038 - 1044
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2020213
Published online 05 November 2020
  1. Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling and metabolic alterations in human AMD. Front Cell Neurosci 2016 ; 10 : 103. [PubMed] [Google Scholar]
  2. Humayun MS, Prince M, de Juan E Jr, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999 ; 40 : 143–148. [PubMed] [Google Scholar]
  3. Humayun MS, de Juan E Jr., Weiland JD, et al. Pattern electrical stimulation of the human retina. Vision Res 1999 ; 39 : 2569–2576. [CrossRef] [PubMed] [Google Scholar]
  4. Stingl K, Schippert R, Bartz-Schmidt KU, et al. Interim results of a multicenter trial with the new electronic subretinal implant Alpha Ams in 15 patients blind from inherited retinal degenerations. Front Neurosci 2017 ; 11 : 445. [Google Scholar]
  5. Da Cruz L, Dorn JD, Humayun MS, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology 2016 ; 123 : 2248–2254. [Google Scholar]
  6. Palanker D, Le Mer Y, Mohand-Said S, et al. Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 2020; 127 : 1097–104. [Google Scholar]
  7. Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968 ; 196 : 479–493. [CrossRef] [PubMed] [Google Scholar]
  8. Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J 2000 ; 46 : 3–9. [CrossRef] [PubMed] [Google Scholar]
  9. Beauchamp MS, Oswalt D, Sun P, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 2020; 181 : 774–83 e5. [CrossRef] [PubMed] [Google Scholar]
  10. Freeman DK, Rizzo JF, 3rd, Fried SI. Encoding visual information in retinal ganglion cells with prosthetic stimulation. J Neural Eng 2011 ; 8 : 035005. [Google Scholar]
  11. Da Cruz L, Coley BF, Dorn J, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013 ; 97 : 632–636. [CrossRef] [PubMed] [Google Scholar]
  12. Weitz AC, Nanduri D, Behrend MR, et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med 2015; 7 : 318ra203. [Google Scholar]
  13. Delbeke J, Oozeer M, Veraart C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 2003 ; 43 : 1091–1102. [CrossRef] [PubMed] [Google Scholar]
  14. Brelen ME, Duret F, Gerard B, et al. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2005 ; 2 : S22–S28. [Google Scholar]
  15. Chow AY, Bittner AK, Pardue MT. The artificial silicon retina in retinitis pigmentosa patients (an American ophthalmological association thesis). Trans Am Ophthalmol Soc 2010 ; 108 : 120–154. [PubMed] [Google Scholar]
  16. Chow AY, Chow VY, Packo KH, et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004 ; 122 : 460–469. [CrossRef] [PubMed] [Google Scholar]
  17. Lorach H, Palanker E. Prothèses rétiniennes : des implants photovoltaïques à haute résolution. Med Sci (Paris) 2015 ; 31 : 830–831. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Joucla S, Yvert B. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PLoS One 2009 ; 4 : e4828. [CrossRef] [PubMed] [Google Scholar]
  19. Prevot PH, Gehere K, Arcizet F, et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat Biomed Eng 2020; 4 : 172–80. [CrossRef] [PubMed] [Google Scholar]
  20. Lorach H, Goetz G, Smith R, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med 2015 ; 21 : 476–482. [CrossRef] [PubMed] [Google Scholar]
  21. Fujikado T, Kamei M, Sakaguchi H, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011 ; 52 : 4726–4733. [CrossRef] [PubMed] [Google Scholar]
  22. Ayton LN, Blamey PJ, Guymer RH, et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 2014 ; 9 : e115239. [CrossRef] [PubMed] [Google Scholar]
  23. Nayagam DA, Williams RA, Allen PJ, et al. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. PLoS One 2015 ; 9 : e97182. [Google Scholar]
  24. Dobelle WH, Mladejovsky MG, Girvin JP. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974 ; 183 : 440–444. [Google Scholar]
  25. Tehovnik EJ, Slocum WM. Phosphene induction by microstimulation of macaque V1. Brain Res Rev 2007 ; 53 : 337–343. [CrossRef] [PubMed] [Google Scholar]
  26. Fernandez E, Greger B, House PA, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014 ; 7 : 24. [Google Scholar]
  27. Bendali A, Rousseau L, Lissorgues G, et al. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials 2015 ; 67 : 73–83. [CrossRef] [PubMed] [Google Scholar]
  28. Hadjinicolaou AE, Leung RT, Garrett DJ, et al. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 2012 ; 33 : 5812–5820. [CrossRef] [PubMed] [Google Scholar]
  29. Bendali A, Hess LH, Seifert M, et al. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater 2013 ; 2 : 929–933. [Google Scholar]
  30. Kostarelos K, Vincent M, Hebert C, Garrido JA. Graphene in the design and engineering of next-generation neural interfaces. Adv Mater 2017 ; 29 : [Google Scholar]
  31. Piret G, Hebert C, Mazellier JP, et al. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 2015 ; 53 : 173–183. [CrossRef] [PubMed] [Google Scholar]
  32. Maya-Vetencourt JF, Ghezzi D, Antognazza MR, et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat Mater 2017 ; 16 : 681–689. [CrossRef] [PubMed] [Google Scholar]
  33. Ghezzi D, Antognazza MR, Dal Maschio M, et al. A hybrid bioorganic interface for neuronal photoactivation. Nat Commun 2011 ; 2 : 166. [Google Scholar]
  34. Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond); 24 : 340–6. [Google Scholar]
  35. Tang J, Qin N, Chong Y, et al. Nanowire arrays restore vision in blind mice. Nat Commun 2018 ; 9 : 786. [Google Scholar]
  36. Nelidova D, Morikawa RK, Cowan CS, et al. Restoring light sensitivity using tunable near-infrared sensors. Science 2020; 368 : 1108–13. [Google Scholar]
  37. Maya-Vetencourt JF, Manfredi G, Mete M, et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat Nanotechnol 2020; 15 : 698–708. [CrossRef] [PubMed] [Google Scholar]
  38. Polosukhina A, Litt J, Tochitsky I, et al. Photochemical restoration of visual responses in blind mice. Neuron 2012 ; 75 : 271–282. [CrossRef] [PubMed] [Google Scholar]
  39. Tochitsky I, Helft Z, Meseguer V, et al. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 2016 ; 92 : 100–113. [CrossRef] [PubMed] [Google Scholar]
  40. Telias M, Denlinger B, Helft Z, et al. Retinoic acid induces hyperactivity, and blocking its receptor unmasks light responses and augments vision in retinal degeneration. Neuron 2019 ; 102 : 574–86 e5. [Google Scholar]
  41. Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003 ; 100 : 13940–13945. [CrossRef] [Google Scholar]
  42. Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006 ; 50 : 23–33. [CrossRef] [PubMed] [Google Scholar]
  43. Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008 ; 11 : 667–675. [CrossRef] [PubMed] [Google Scholar]
  44. Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to on-bipolar cells with vitreally administered aav restores on and off visual responses in blind mice. Mol Ther 2015 ; 23 : 7–16. [CrossRef] [PubMed] [Google Scholar]
  45. Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010 ; 329 : 413–417. [Google Scholar]
  46. Khabou H, Garita-Hernandez M, Chaffiol A, et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 2018; 3 : pii: 96029. [CrossRef] [PubMed] [Google Scholar]
  47. Chaffiol A, Caplette R, Jaillard C, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 2017 ; 25 : 2546–2560. [CrossRef] [PubMed] [Google Scholar]
  48. Gauvain G, Akolkar H, Chaffiol A, et al. Optogenetic therapy: high spatiotemporal resolution and pattern recognition compatible with vision restoration in non-human primates. BioRxiv 2020. https://www.biorxiv.org/content/10.1101/2020.05.17.100230v1. [Google Scholar]
  49. Ferrari U, Deny S, Sengupta A, et al. Towards optogenetic vision restoration with high resolution. PLoS Comput Biol 2020; 16 : e1007857. [Google Scholar]
  50. Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 2008 ; 105 : 16009–16014. [CrossRef] [Google Scholar]
  51. Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol 2015 ; 25 : 2111–2122. [CrossRef] [PubMed] [Google Scholar]
  52. Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun 2019 ; 10 : 1221. [Google Scholar]
  53. Vandecasteele M, Senova YS, Palfi S, Dugue GP. Potentiel thérapeutique de la neuromodulation optogénétique. Med Sci (Paris) 2015 ; 31 : 404–416. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  54. Jazayeri M, Lindbloom-Brown Z, Horwitz GD. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 2012 ; 15 : 1368–1370. [CrossRef] [PubMed] [Google Scholar]
  55. Ju N, Jiang R, Macknik SL, et al. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates. PLoS Biol 2018 ; 16 : e2005839. [CrossRef] [PubMed] [Google Scholar]
  56. McAlinden N, Cheng Y, Scharf R, et al. Multisite microLED optrode array for neural interfacing. Neurophotonics 2019 ; 6 : 035010. [CrossRef] [PubMed] [Google Scholar]
  57. Lee SW, Fallegger F, Casse BD, Fried SI. Implantable microcoils for intracortical magnetic stimulation. Sci Adv 2016 ; 2 : e1600889. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.