Open Access
Numéro |
Med Sci (Paris)
Volume 36, Numéro 11, Novembre 2020
Rétine
|
|
---|---|---|
Page(s) | 1038 - 1044 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2020213 | |
Publié en ligne | 5 novembre 2020 |
- Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling and metabolic alterations in human AMD. Front Cell Neurosci 2016 ; 10 : 103. [PubMed] [Google Scholar]
- Humayun MS, Prince M, de Juan E Jr, et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999 ; 40 : 143–148. [PubMed] [Google Scholar]
- Humayun MS, de Juan E Jr., Weiland JD, et al. Pattern electrical stimulation of the human retina. Vision Res 1999 ; 39 : 2569–2576. [CrossRef] [PubMed] [Google Scholar]
- Stingl K, Schippert R, Bartz-Schmidt KU, et al. Interim results of a multicenter trial with the new electronic subretinal implant Alpha Ams in 15 patients blind from inherited retinal degenerations. Front Neurosci 2017 ; 11 : 445. [Google Scholar]
- Da Cruz L, Dorn JD, Humayun MS, et al. Five-year safety and performance results from the Argus II retinal prosthesis system clinical trial. Ophthalmology 2016 ; 123 : 2248–2254. [Google Scholar]
- Palanker D, Le Mer Y, Mohand-Said S, et al. Photovoltaic restoration of central vision in atrophic age-related macular degeneration. Ophthalmology 2020; 127 : 1097–104. [Google Scholar]
- Brindley GS, Lewin WS. The sensations produced by electrical stimulation of the visual cortex. J Physiol 1968 ; 196 : 479–493. [CrossRef] [PubMed] [Google Scholar]
- Dobelle WH. Artificial vision for the blind by connecting a television camera to the visual cortex. Asaio J 2000 ; 46 : 3–9. [CrossRef] [PubMed] [Google Scholar]
- Beauchamp MS, Oswalt D, Sun P, et al. Dynamic stimulation of visual cortex produces form vision in sighted and blind humans. Cell 2020; 181 : 774–83 e5. [CrossRef] [PubMed] [Google Scholar]
- Freeman DK, Rizzo JF, 3rd, Fried SI. Encoding visual information in retinal ganglion cells with prosthetic stimulation. J Neural Eng 2011 ; 8 : 035005. [Google Scholar]
- Da Cruz L, Coley BF, Dorn J, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013 ; 97 : 632–636. [CrossRef] [PubMed] [Google Scholar]
- Weitz AC, Nanduri D, Behrend MR, et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med 2015; 7 : 318ra203. [Google Scholar]
- Delbeke J, Oozeer M, Veraart C. Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 2003 ; 43 : 1091–1102. [CrossRef] [PubMed] [Google Scholar]
- Brelen ME, Duret F, Gerard B, et al. Creating a meaningful visual perception in blind volunteers by optic nerve stimulation. J Neural Eng 2005 ; 2 : S22–S28. [Google Scholar]
- Chow AY, Bittner AK, Pardue MT. The artificial silicon retina in retinitis pigmentosa patients (an American ophthalmological association thesis). Trans Am Ophthalmol Soc 2010 ; 108 : 120–154. [PubMed] [Google Scholar]
- Chow AY, Chow VY, Packo KH, et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 2004 ; 122 : 460–469. [CrossRef] [PubMed] [Google Scholar]
- Lorach H, Palanker E. Prothèses rétiniennes : des implants photovoltaïques à haute résolution. Med Sci (Paris) 2015 ; 31 : 830–831. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Joucla S, Yvert B. Improved focalization of electrical microstimulation using microelectrode arrays: a modeling study. PLoS One 2009 ; 4 : e4828. [CrossRef] [PubMed] [Google Scholar]
- Prevot PH, Gehere K, Arcizet F, et al. Behavioural responses to a photovoltaic subretinal prosthesis implanted in non-human primates. Nat Biomed Eng 2020; 4 : 172–80. [CrossRef] [PubMed] [Google Scholar]
- Lorach H, Goetz G, Smith R, et al. Photovoltaic restoration of sight with high visual acuity. Nat Med 2015 ; 21 : 476–482. [CrossRef] [PubMed] [Google Scholar]
- Fujikado T, Kamei M, Sakaguchi H, et al. Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2011 ; 52 : 4726–4733. [CrossRef] [PubMed] [Google Scholar]
- Ayton LN, Blamey PJ, Guymer RH, et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS One 2014 ; 9 : e115239. [CrossRef] [PubMed] [Google Scholar]
- Nayagam DA, Williams RA, Allen PJ, et al. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: a preclinical safety and efficacy study. PLoS One 2015 ; 9 : e97182. [Google Scholar]
- Dobelle WH, Mladejovsky MG, Girvin JP. Artifical vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science 1974 ; 183 : 440–444. [Google Scholar]
- Tehovnik EJ, Slocum WM. Phosphene induction by microstimulation of macaque V1. Brain Res Rev 2007 ; 53 : 337–343. [CrossRef] [PubMed] [Google Scholar]
- Fernandez E, Greger B, House PA, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014 ; 7 : 24. [Google Scholar]
- Bendali A, Rousseau L, Lissorgues G, et al. Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility. Biomaterials 2015 ; 67 : 73–83. [CrossRef] [PubMed] [Google Scholar]
- Hadjinicolaou AE, Leung RT, Garrett DJ, et al. Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis. Biomaterials 2012 ; 33 : 5812–5820. [CrossRef] [PubMed] [Google Scholar]
- Bendali A, Hess LH, Seifert M, et al. Purified neurons can survive on peptide-free graphene layers. Adv Healthc Mater 2013 ; 2 : 929–933. [Google Scholar]
- Kostarelos K, Vincent M, Hebert C, Garrido JA. Graphene in the design and engineering of next-generation neural interfaces. Adv Mater 2017 ; 29 : [Google Scholar]
- Piret G, Hebert C, Mazellier JP, et al. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials 2015 ; 53 : 173–183. [CrossRef] [PubMed] [Google Scholar]
- Maya-Vetencourt JF, Ghezzi D, Antognazza MR, et al. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness. Nat Mater 2017 ; 16 : 681–689. [CrossRef] [PubMed] [Google Scholar]
- Ghezzi D, Antognazza MR, Dal Maschio M, et al. A hybrid bioorganic interface for neuronal photoactivation. Nat Commun 2011 ; 2 : 166. [Google Scholar]
- Pasadhika S, Fishman GA. Effects of chronic exposure to hydroxychloroquine or chloroquine on inner retinal structures. Eye (Lond); 24 : 340–6. [Google Scholar]
- Tang J, Qin N, Chong Y, et al. Nanowire arrays restore vision in blind mice. Nat Commun 2018 ; 9 : 786. [Google Scholar]
- Nelidova D, Morikawa RK, Cowan CS, et al. Restoring light sensitivity using tunable near-infrared sensors. Science 2020; 368 : 1108–13. [Google Scholar]
- Maya-Vetencourt JF, Manfredi G, Mete M, et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat Nanotechnol 2020; 15 : 698–708. [CrossRef] [PubMed] [Google Scholar]
- Polosukhina A, Litt J, Tochitsky I, et al. Photochemical restoration of visual responses in blind mice. Neuron 2012 ; 75 : 271–282. [CrossRef] [PubMed] [Google Scholar]
- Tochitsky I, Helft Z, Meseguer V, et al. How azobenzene photoswitches restore visual responses to the blind retina. Neuron 2016 ; 92 : 100–113. [CrossRef] [PubMed] [Google Scholar]
- Telias M, Denlinger B, Helft Z, et al. Retinoic acid induces hyperactivity, and blocking its receptor unmasks light responses and augments vision in retinal degeneration. Neuron 2019 ; 102 : 574–86 e5. [Google Scholar]
- Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003 ; 100 : 13940–13945. [CrossRef] [Google Scholar]
- Bi A, Cui J, Ma YP, et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006 ; 50 : 23–33. [CrossRef] [PubMed] [Google Scholar]
- Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008 ; 11 : 667–675. [CrossRef] [PubMed] [Google Scholar]
- Mace E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to on-bipolar cells with vitreally administered aav restores on and off visual responses in blind mice. Mol Ther 2015 ; 23 : 7–16. [CrossRef] [PubMed] [Google Scholar]
- Busskamp V, Duebel J, Balya D, et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010 ; 329 : 413–417. [Google Scholar]
- Khabou H, Garita-Hernandez M, Chaffiol A, et al. Noninvasive gene delivery to foveal cones for vision restoration. JCI Insight 2018; 3 : pii: 96029. [CrossRef] [PubMed] [Google Scholar]
- Chaffiol A, Caplette R, Jaillard C, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 2017 ; 25 : 2546–2560. [CrossRef] [PubMed] [Google Scholar]
- Gauvain G, Akolkar H, Chaffiol A, et al. Optogenetic therapy: high spatiotemporal resolution and pattern recognition compatible with vision restoration in non-human primates. BioRxiv 2020. https://www.biorxiv.org/content/10.1101/2020.05.17.100230v1. [Google Scholar]
- Ferrari U, Deny S, Sengupta A, et al. Towards optogenetic vision restoration with high resolution. PLoS Comput Biol 2020; 16 : e1007857. [Google Scholar]
- Lin B, Koizumi A, Tanaka N, et al. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 2008 ; 105 : 16009–16014. [CrossRef] [Google Scholar]
- Cehajic-Kapetanovic J, Eleftheriou C, Allen AE, et al. Restoration of vision with ectopic expression of human rod opsin. Curr Biol 2015 ; 25 : 2111–2122. [CrossRef] [PubMed] [Google Scholar]
- Berry MH, Holt A, Salari A, et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat Commun 2019 ; 10 : 1221. [Google Scholar]
- Vandecasteele M, Senova YS, Palfi S, Dugue GP. Potentiel thérapeutique de la neuromodulation optogénétique. Med Sci (Paris) 2015 ; 31 : 404–416. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Jazayeri M, Lindbloom-Brown Z, Horwitz GD. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 2012 ; 15 : 1368–1370. [CrossRef] [PubMed] [Google Scholar]
- Ju N, Jiang R, Macknik SL, et al. Long-term all-optical interrogation of cortical neurons in awake-behaving nonhuman primates. PLoS Biol 2018 ; 16 : e2005839. [CrossRef] [PubMed] [Google Scholar]
- McAlinden N, Cheng Y, Scharf R, et al. Multisite microLED optrode array for neural interfacing. Neurophotonics 2019 ; 6 : 035010. [CrossRef] [PubMed] [Google Scholar]
- Lee SW, Fallegger F, Casse BD, Fried SI. Implantable microcoils for intracortical magnetic stimulation. Sci Adv 2016 ; 2 : e1600889. [CrossRef] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.