Open Access
Issue
Med Sci (Paris)
Volume 36, Number 3, Mars 2020
Page(s) 264 - 270
Section Forum
DOI https://doi.org/10.1051/medsci/2020021
Published online 31 March 2020
  1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 ; 126 : 663–676. [CrossRef] [PubMed] [Google Scholar]
  2. Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007 ; 448 : 313–317. [Google Scholar]
  3. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 ; 131 : 861–872. [CrossRef] [PubMed] [Google Scholar]
  4. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science 1998 ; 282 : 1145–1147. [Google Scholar]
  5. Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017 ; 16 : 115–130. [Google Scholar]
  6. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of dsease and development. Physiol Rev 2019 ; 99 : 79–114. [Google Scholar]
  7. Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015 ; 42 : 33. [CrossRef] [PubMed] [Google Scholar]
  8. Hayashi K, Ohta H, Kurimoto K, et al. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 2011 ; 146 : 519–532. [CrossRef] [PubMed] [Google Scholar]
  9. Hirota T, Ohta H, Powell BE, et al. Fertile offspring from sterile sex chromosome trisomic mice. Science 2017 ; 357 : 932–935. [Google Scholar]
  10. Hayashi K, Saitou M. Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 2013 ; 8 : 1513–1524. [CrossRef] [PubMed] [Google Scholar]
  11. Jeanisch R, Eggan K, Humpherys D, et al. Nuclear cloning, stem cells, and genomic reprogramming. Cloning Stem Cells 2002 ; 4 : 389–396. [Google Scholar]
  12. Bhartiya D, Anand S, Patel H, et al. Making gametes from alternate sources of stem cells: past, present and future. Reprod Biol Endocrinol 2017 ; 15 : 89. [Google Scholar]
  13. Kuiken TA, Barlow AK, Hargrove LJ, et al. Targeted muscle reinnervation for the upper and lower extremity. Techn Orthopaedics 2017 ; 32 : 109–116. [CrossRef] [Google Scholar]
  14. Gazzaniga MS. Le libre arbitre et la science du cerveau 2013 ; Paris : Odile Jacob [Google Scholar]
  15. Chneiweiss H.. Augmenter les performances du cerveau : un leurre ?. Pour la Science 2012 ; 422 : 98–105. [Google Scholar]
  16. Greene JD, Nystrom LE, Engell AD, et al. The neural bases of cognitive conflict and control in moral judgment. Neuron 2004 ; 44 : 389–400. [CrossRef] [PubMed] [Google Scholar]
  17. Phelps EA, Hofmann SG. Memory editing from science fiction to clinical practice. Nature 2019 ; 572 : 43–50. [Google Scholar]
  18. Damasio AR. Spinoza avait raison : joie et tristesse, le cerveau des émotions 2014 ; Paris : Odile Jacob [Google Scholar]
  19. Richards DJ, Coyle RC, Tan Y, et al. Inspiration from heart development: biomimetic development of functional human cardiac organoids. Biomaterials 2017 ; 142 : 112–123. [CrossRef] [PubMed] [Google Scholar]
  20. Bredenoord AL, Clevers H, Knoblich JA. Human tissues in a dish: the research and ethical implications of organoid technology. Science 2017; 355 : eaaf9414. [Google Scholar]
  21. Wu J, Greely HT, Jaenisch R, et al. Stem cells and interspecies chimaeras. Nature 2016 ; 540 : 51–59. [Google Scholar]
  22. Wu J, Belmonte JCI. Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Res 2016 ; 25 : 375–384. [CrossRef] [PubMed] [Google Scholar]
  23. Zhong C, Wu J, Izpisua Belmonte JC. Pig chimeric model with human pluripotent stem cells. In: Hyun I, De Los Angeles A, eds. Chimera research. New York, NY : Springer New York, 2019 : 101–24. [CrossRef] [Google Scholar]
  24. Wu J, Platero-Luengo A, Sakurai M, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell 2017 ; 168 : 473–86 e15. [Google Scholar]
  25. Hashimoto H, Eto T, Yamamoto M, et al. Development of blastocyst complementation technology without contributions to gametes and the brain. Exp Anim 2019 ; 68 : 361–370. [CrossRef] [PubMed] [Google Scholar]
  26. Koplin J, Wilkinson D. Moral uncertainty and the farming of human-pig chimeras. J Med Ethics 2019 ; 45 : 440–446. [CrossRef] [PubMed] [Google Scholar]
  27. Jordan B.. Bébés CRISPR : anatomie d’une transgression. Med Sci (Paris) 2019 ; 35 : 266–270. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  28. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996 ; 86 : 367–377. [CrossRef] [PubMed] [Google Scholar]
  29. Solloch UV, Lang K, Lange V, et al. Frequencies of gene variant CCR5-Δ32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum Immunol 2017 ; 78 : 710–717. [CrossRef] [PubMed] [Google Scholar]
  30. Joy MT, Ben Assayag E, Shabashov-Stone D, et al. CCR5 is a therapeutic target for recovery after stroke and traumatic brain injury. Cell 2019 ; 176 : 1143–1157 e13. [Google Scholar]
  31. Xie Y, Zhan S, Ge W, et al. The potential risks of C-C chemokine receptor 5-edited babies in bone development. Bone Res 2019 ; 7 : 4. [Google Scholar]
  32. Mickiene˙ A, Pakalniene˙ J, Nordgren J, et al. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS One 2014; 9 : e106798. [CrossRef] [PubMed] [Google Scholar]
  33. Tanyel CR, Cincin ZB, Gokcen-Rohlig B, et al. Effects of genetic variants of CCR5 chemokine receptors on oral squamous cell carcinoma. Genet Mol Res 2013 ; 12 : 5714–5720. [Google Scholar]
  34. De Chneiweiss H.. retour de Hong Kong ou l’éthique à l’heure d’une génétique d’augmentation » de la personne humaine. Med Sci (Paris) 2019 ; 35 : 263–265. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  35. Lander ES, Baylis F, Zhang F, et al. Adopt a moratorium on heritable genome editing. Nature 2019 ; 567 : 165–168. [Google Scholar]
  36. Burt A, Crisanti A. Gene Drive: Evolved and Synthetic. ACS Chem. Biol. 2018 ; 13 : 343–346. [CrossRef] [PubMed] [Google Scholar]
  37. Rudenko L, Palmer MJ, Oye K. Considerations for the governance of gene drive organisms. Pathogens Global Health 2018 ; 112 : 162–181. [CrossRef] [Google Scholar]
  38. Macias V, Ohm J, Rasgon J. Gene drive for mosquito control: where did it come from and where are we headed?. IJERPH 2017 ; 14 : 1006. [CrossRef] [Google Scholar]
  39. Gourvest M, Brousset P, Bousquet M. Long noncoding RNAs in acute myeloid leukemia: functional characterization and clinical relevance. Cancers 2019 ; 11 : 1638. [Google Scholar]
  40. Baby V, Labroussaa F, Lartigue C, et al. Chromosomes synthétiques : réécrire le code de la vie. Med Sci (Paris) 2019 ; 35 : 753–760. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  41. Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol 2014 ; 12 : 381–390. [CrossRef] [PubMed] [Google Scholar]
  42. Bartley BA, Kim K, Medley JK, et al. Synthetic biology: engineering living systems from biophysical principles. Biophysical Journal 2017 ; 112 : 1050–1058. [CrossRef] [PubMed] [Google Scholar]
  43. Davies J. Using synthetic biology to explore principles of development. Development 2017 ; 144 : 1146–1158. [CrossRef] [PubMed] [Google Scholar]
  44. Jordan B. Les tests génétiques grand public en caméra cachée. Med Sci (Paris) 2011 ; 27 : 103–106. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  45. Jordan B. Synthétique, vous avez dit synthétique ?. Med Sci (Paris) 2016 ; 32 : 651–653. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.