Open Access
Issue
Med Sci (Paris)
Volume 36, Number 1, Janvier 2020
Page(s) 38 - 43
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019267
Published online 04 February 2020
  1. Mattick JS. The State of Long Non-Coding RNA Biology. Noncoding RNA 2018; 4. [PubMed] [Google Scholar]
  2. Brenner S Jacob F Meselson M An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 1961 ; 190 : 576–581. [Google Scholar]
  3. Salzman J Gawad C Wang PL et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 2012 ; 7 : e30733. [CrossRef] [PubMed] [Google Scholar]
  4. Memczak S Jens M Elefsinioti A et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 2013 ; 495 : 333–338. [Google Scholar]
  5. Jeck WR Sorrentino JA Wang K et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013 ; 19 : 141–157. [PubMed] [Google Scholar]
  6. Ji P Wu W Chen S et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep 2019 ; 26 : 3444–60 e5. [Google Scholar]
  7. Li LJ Leng RX Fan YG et al. Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs. Exp Cell Res 2017 ; 361 : 1–8. [Google Scholar]
  8. Rybak-Wolf A Stottmeister C Glazar P et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 2015 ; 58 : 870–885. [PubMed] [Google Scholar]
  9. Li Z Huang C Bao C et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015 ; 22 : 256–264. [PubMed] [Google Scholar]
  10. Hansen TB Jensen TI Clausen BH et al. Natural RNA circles function as efficient microRNA sponges. Nature 2013 ; 495 : 384–388. [Google Scholar]
  11. Du WW Yang W Liu E et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 2016 ; 44 : 2846–2858. [PubMed] [Google Scholar]
  12. Pamudurti NR Bartok O Jens M et al. Translation of CircRNAs. Mol Cell 2017 ; 66 : 9–21 e7. [Google Scholar]
  13. Ragan C Goodall GJ Shirokikh NE Preiss T Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep 2019 ; 9 : 2048. [PubMed] [Google Scholar]
  14. Holcik M Sonenberg N Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 2005 ; 6 : 318–327. [CrossRef] [PubMed] [Google Scholar]
  15. Kozak M. Inability of circular mRNA to attach to eukaryotic ribosomes. Nature 1979 ; 280 : 82–85. [Google Scholar]
  16. Godet AC David F Hantelys F et al. IRES trans-acting factors, key actors of the stress response. Int J Mol Sci 2019 ; 20 : [Google Scholar]
  17. Pelletier J Sonenberg N Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 1988 ; 334 : 320–325. [Google Scholar]
  18. Chen CY Sarnow P Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 1995 ; 268 : 415–417. [Google Scholar]
  19. Wang Y Wang Z Efficient backsplicing produces translatable circular mRNAs. RNA 2015 ; 21 : 172–179. [PubMed] [Google Scholar]
  20. Legnini I, Di Timoteo G, Rossi F, et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 2017; 66 : 22–37e9. [PubMed] [Google Scholar]
  21. Diallo LH Tatin F David F et al. How are circRNAs translated by non-canonical initiation mechanisms?. Biochimie 2019 ; 164 : 45–52. [PubMed] [Google Scholar]
  22. Zhang M Huang N Yang X et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 2018 ; 37 : 1805–1814. [Google Scholar]
  23. Meyer KD Patil DP Zhou J et al. 5’ UTR m[]A promotes cap-independent translation. Cell 2015 ; 163 : 999–1010. [Google Scholar]
  24. Yang Y Fan X Mao M et al. Extensive translation of circular RNAs driven by N[]-methyladenosine. Cell Res 2017 ; 27 : 626–641. [PubMed] [Google Scholar]
  25. Meganck RM Borchardt EK Castellanos Rivera RM et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids 2018 ; 13 : 89–98. [Google Scholar]
  26. Wesselhoeft RA, Kowalski PS, Parker-Hale FC, et al. RNA Circularization diminishes immunogenicity and can extend translation duration in vivo. Mol Cell 2019; 74 : 508–20e4. [PubMed] [Google Scholar]
  27. Wu J Qi X Liu L et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids 2019 ; 16 : 589–596. [Google Scholar]
  28. Zhang Y Liu H Li W et al. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY) 2017 ; 9 : 1585–1594. [Google Scholar]
  29. Yang Y Gao X Zhang M et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 2018 ; 110 : [Google Scholar]
  30. Zhang S Zhu D Li H et al. Characterization of circRNA-associated-ceRNA networks in a senescence-accelerated mouse prone 8 brain. Mol Ther 2017 ; 25 : 2053–2061. [PubMed] [Google Scholar]
  31. Cai H Li Y Niringiyumukiza JD et al. Circular RNA involvement in aging: an emerging player with great potential. Mech Ageing Dev 2019 ; 178 : 16–24. [CrossRef] [PubMed] [Google Scholar]
  32. Knupp D Miura P CircRNA accumulation: a new hallmark of aging?. Mech Ageing Dev 2018 ; 173 : 71–79. [CrossRef] [PubMed] [Google Scholar]
  33. Lucile Fressigné L, Simard MJ. La biogenèse des ARN courts non codants chez les animaux. Med Sci (Paris) 2018; 34 : 137–44. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.