Open Access
Med Sci (Paris)
Volume 36, Number 1, Janvier 2020
Page(s) 31 - 37
Section M/S Revues
Published online 04 February 2020
  1. Lévy-BruhlD.Bases des recommandations vaccinales. Med/Sci (Paris) 2007 ; 23 : 404–408. [Google Scholar]
  2. Lévy-BruhlD. Estimation de l’impact épidémiologique des niveaux de couverture vaccinale insuffisants en France. Bull Acad Natle Med 2016 ; 200 : 219–231. [Google Scholar]
  3. RappuoliR, SantoniA, MantovaniA Vaccines: an achievement of civilization, a human right, our health insurance for the future. J Exp Med 2019 ; 216 : 7–9. [CrossRef] [PubMed] [Google Scholar]
  4. PlotkinSA Complex correlates of protection after vaccination. Clin Infect Dis 2013 ; 56 : 1458–1465. [CrossRef] [PubMed] [Google Scholar]
  5. ZimmermannP, CurtisN Factors that influence the immune response to vaccination. Clin Microbiol Rev 2019 ; 32 : e00084–e00018. [PubMed] [Google Scholar]
  6. McCullersJA, HuberVC Correlates of vaccine protection from influenza and its complications. Hum Vaccin Immunother 2012 ; 8 : 34–44. [CrossRef] [PubMed] [Google Scholar]
  7. HobsonD, CurryRL, BeareAS, Ward-GardnerA The role of serum haemagglutination-inhibiting antibody in protection against challenge infection with influenza A2 and B viruses. J Hyg (Lond) 1972 ; 70 : 767–777. [PubMed] [Google Scholar]
  8. CoudevilleL, BailleuxF, RicheB et al. Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model. BMC Med Res Methodol 2010 ; 10 : 18. [CrossRef] [PubMed] [Google Scholar]
  9. RimmelzwaanGF, FouchierRA, OsterhausAD Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr Opin Biotechnol 2007 ; 18 : 529–536. [Google Scholar]
  10. TestaJS, ShettyV, HafnerJ et al. MHC class I-presented T cell epitopes identified by immunoproteomics analysis are targets for a cross reactive influenza-specific T cell response. PLoS One 2012 ; 7 : e48484. [CrossRef] [PubMed] [Google Scholar]
  11. McMichaelAJ, GotchFM, NobleGR, BearePA Cytotoxic T-cell immunity to influenza. N Engl J Med 1983 ; 309 : 13–17. [Google Scholar]
  12. McElhaneyJE, XieD, HagerWD et al. T cell responses are better correlates of vaccine protection in the elderly. J Immunol 2006 ; 176 : 6333–6339. [CrossRef] [PubMed] [Google Scholar]
  13. LinJ, SomanathanS, RoyS et al. Lung homing CTLs and their proliferation ability are important correlates of vaccine protection against influenza. Vaccine 2010 ; 28 : 5669–5675. [CrossRef] [PubMed] [Google Scholar]
  14. BonduelleO, YahiaN, SiberilS et al. Longitudinal and integrative biomodeling of effector and memory immune compartments after inactivated influenza vaccination. J Immunol 2013 ; 191 : 623–631. [CrossRef] [PubMed] [Google Scholar]
  15. PanCH, ValsamakisA, ColellaT et al. Inaugural article: modulation of disease, T cell responses, and measles virus clearance in monkeys vaccinated with H-encoding alphavirus replicon particles. Proc Natl Acad Sci U S A 2005 ; 102 : 11581–11588. [CrossRef] [PubMed] [Google Scholar]
  16. FletcherHA Correlates of immune protection from tuberculosis. Curr Mol Med 2007 ; 7 : 319–325. [CrossRef] [PubMed] [Google Scholar]
  17. PlotkinSA Is there a formula for an effective CMV vaccine?. J Clin Virol 2002 ; 25 : S13–S21. [Google Scholar]
  18. MatzingerP. The danger model: a renewed sense of self. Science 2002 ; 296 : 301–305. [Google Scholar]
  19. AkiraS, UematsuS, TakeuchiO Pathogen recognition and innate immunity. Cell 2006 ; 124 : 783–781. [CrossRef] [PubMed] [Google Scholar]
  20. PulendranB, LiS, NakayaHI Systems vaccinology. Immunity 2010 ; 33 : 516–529. [CrossRef] [PubMed] [Google Scholar]
  21. PulendranB, AhmedR Translating innate immunity into immunological memory: Implications for vaccine development. Cell 2006 ; 124 : 849–863. [PubMed] [Google Scholar]
  22. CombadiereB, LiardC Transcutaneous and intradermal vaccination. Hum Vaccin 2011 ; 7 : 811–827. [CrossRef] [PubMed] [Google Scholar]
  23. CamilloniB, BasileoM, ValenteS et al. Immunogenicity of intramuscular MF59- adjuvanted and intradermal administered influenza enhanced vaccines in subjects aged over 60: a literature review. Hum Vaccin Immunother 2015 ; 11 : 553–563. [CrossRef] [PubMed] [Google Scholar]
  24. BoonnakK, DhitavatJ, ThantamnuN et al. Immune responses to intradermal and intramuscular inactivated influenza vaccine among older age group. Vaccine 2017 ; 35 : 7339–7346. [CrossRef] [PubMed] [Google Scholar]
  25. ZweerinkHJ, CourtneidgeSA, SkehelJJ et al. Cytotoxic T cells kill influenza virus infected cells but do not distinguish between serologically distinct type A viruses. Nature 1977 ; 267 : 354–356. [Google Scholar]
  26. LiardC, MunierS, AriasM et al. Targeting of HIV-p24 particlebased vaccine into differential skin layers induces distinct arms of the immune responses. Vaccine 2011 ; 29 : 6379–6391. [CrossRef] [PubMed] [Google Scholar]
  27. RomaniN, FlacherV, TrippCH et al. Targeting skin dendritic cells to improve intradermal vaccination. Curr Top Microbiol Immunol 2012 ; 351 : 113–138. [PubMed] [Google Scholar]
  28. DuffyD, PerrinH, AbadieV et al. Neutrophils transport antigen from the dermis to the bone marrow, initiating a source of memory CD8+ T Cells. Immunity 2012 ; 37 : 917–929. [CrossRef] [PubMed] [Google Scholar]
  29. VogtA, CombadiereB, HadamS et al. 40nm, but not 750 or 1,500nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol 2006 ; 126 : 1316–1322. [CrossRef] [PubMed] [Google Scholar]
  30. Haidari G, Cope A, Miller A, et al. Combined skin and muscle vaccination differentially impact the quality of effector T cell functions: the CUTHIVAC-001 randomized trial. Sci Rep 2017; 7. [Google Scholar]
  31. CheesemanHM, DayS, McFarlaneLR et al. Combined skin and muscle DNA priming provides enhanced humoral responses to a human immunodeficency virus type 1 clade C envelope vaccine. Hum Gene Ther 2018 ; 29 : 1011–1028. [Google Scholar]
  32. MaheB, VogtA, LiardC et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol 2009 ; 129 : 1156–1164. [CrossRef] [PubMed] [Google Scholar]
  33. CombadièreB, VogtA, MahéB et al. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated Influenza vaccine: a randomized phase I trial. PLoS One 2010 ; 5 : e10818. [CrossRef] [PubMed] [Google Scholar]
  34. LevinC, BonduelleO, NuttensC et al. Critical role for skin-derived migratory DCs and Langerhans cells in TFH and GC responses after intradermal immunization. J Invest Dermatol 2017 ; 137 : 1905–1913. [CrossRef] [PubMed] [Google Scholar]
  35. GonçalvesE, BonduelleO, SoriaA et al. Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination. J Clin Invest 2019 ; 129 : 1960–1971. [CrossRef] [PubMed] [Google Scholar]
  36. VogtA, MaheB, CostagliolaD et al. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J. Immunol 2008 ; 180 : 1482–1489. [CrossRef] [PubMed] [Google Scholar]
  37. LiardC, MunierS, Joulin-GietA et al. Intradermal immunization triggers epidermal Langerhans cell mobilization required for CD8 T-cell immune responses. J Invest Dermatol 2012 ; 132 : 615–625. [CrossRef] [PubMed] [Google Scholar]
  38. HainingWN, PulendranB Identifying gnostic predictors of the vaccine response. Curr Opin Immunol 2012 ; 24 : 332–336. [CrossRef] [PubMed] [Google Scholar]
  39. RaoS, GhoshD, AsturiasEJ, WeinbergA What can we learn about influenza infection and vaccination from transcriptomics?. Hum Vaccines Immunother 2019 ; 0 : 1–9. [Google Scholar]
  40. BucasasKL, FrancoLM, ShawCA et al. Early patterns of gene expression correlate with the humoral immune response to influenza vaccination in humans. J Infect Dis 2011 ; 203 : 921–929. [PubMed] [Google Scholar]
  41. NakayaHI, WrammertJ, LeeEK et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 2011 ; 12 : 786–795. [CrossRef] [PubMed] [Google Scholar]
  42. Marchetti L, Siena E, Lauria M, et al. Exploring the limitations of peripheral blood transcriptional biomarkers in predicting influenza vaccine responsiveness. Complexity 2017. [Google Scholar]
  43. RechtienA, RichertL, LorenzoH et al. Systems vaccinology identifies an early innate immune signature as a correlate of antibody responses to the Ebola vaccine rVSV-ZEBOV. Cell Rep 2017 ; 20 : 2251–2261. [CrossRef] [PubMed] [Google Scholar]
  44. TsangJS Utilizing population variation, vaccination, and systems biology to study human immunology. Trends Immunol 2015 ; 36 : 479–493. [CrossRef] [PubMed] [Google Scholar]
  45. ColeKS, MartinJM, HorneWT et al. Differential gene expression elicited by children in response to the 2015–16 live attenuated versus inactivated influenza vaccine. Vaccine 2017 ; 35 : 6893–6897. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.