Free Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 975 - 981
Section La révolution des anticorps modulateurs de la réponse immunitaire en oncologie
DOI https://doi.org/10.1051/medsci/2019241
Published online 06 January 2020
  1. Watier H.. Biothérapies, immunothérapies, thérapies ciblées, biomédicaments. De quoi faut-il parler ?. Med Sci (Paris) 2014 ; 30: 567–575. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. Pottier J, Chastang R, Dumet C, Watier H. Rethinking the INN system for therapeutic antibodies. MAbs 2017 ; 9: 5–11. [CrossRef] [PubMed] [Google Scholar]
  3. Ribas A.. Anti-CTLA4 antibody clinical trials in melanoma. Update Cancer Ther 2007 ; 2: 133–191. [CrossRef] [PubMed] [Google Scholar]
  4. Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003 ; 171: 6251–6259. [CrossRef] [PubMed] [Google Scholar]
  5. Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 2013 ; 1: 32–42. [CrossRef] [PubMed] [Google Scholar]
  6. Romano E, Kusio-Kobialka M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 2015 ; 112: 6140–6145. [CrossRef] [Google Scholar]
  7. Sharma A, Subudhi SK, Blando J, et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin Cancer Res 2019 ; 25: 1233–1238. [CrossRef] [PubMed] [Google Scholar]
  8. Quezada SA, Peggs KS. Lost in translation: deciphering the mechanism of action of anti-human CTLA-4. Clin Cancer Res 2019 ; 25: 1130–1132. [CrossRef] [PubMed] [Google Scholar]
  9. Sanseviero E, O’Brien EM, Karras JR, et al. Anti-CTLA-4 activates intratumoral NK cells and combined with IL15/IL15Rα complexes enhances tumor control. Cancer Immunol Res 2019 ; 7: 1371–1380. [CrossRef] [PubMed] [Google Scholar]
  10. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 2002 ; 99: 754–758. [Google Scholar]
  11. Arce Vargas F, Furness AJS, Litchfield K, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 2018; 33: 649–63. [CrossRef] [PubMed] [Google Scholar]
  12. Ha D, Tanaka A, Kibayashi T, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci USA 2019 ; 116: 609–618. [CrossRef] [Google Scholar]
  13. Waight J, Manrique M, Gombos R, et al. Preclinical functional characterization of AGEN1181, a clinical stage Fc-engineered anti-CTLA-4 antibody for the treatment of patients with early and advanced malignancies. J Clin Oncol 2019 ; 37: 15 suppl e14126. [Google Scholar]
  14. Arce Vargas F, Furness AJS, Solomon I, et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017; 46: 577–86. [CrossRef] [PubMed] [Google Scholar]
  15. Bulliard Y, Jolicoeur R, Zhang J, et al. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol 2014 ; 92: 475–480. [CrossRef] [PubMed] [Google Scholar]
  16. Leroy X, Hoofd C, Cuende J, et al. A-TIGIT antagonist antibody EOS884448 shows dual mechanism of action by restoration of T cell effector functions and preferential depletion of Treg. Cancer Res 2018; 78 (13 suppl): LB–114. [Google Scholar]
  17. Dahan R, Sega E, Engelhardt J, et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 2015 ; 28: 285–295. [CrossRef] [PubMed] [Google Scholar]
  18. Dumet C, Pottier J, Gouilleux-Gruart V, Watier H. Insights into the IgG heavy chain engineering patent landscape as applied to IgG4 antibody development. Mabs 2019 (sous presse). [Google Scholar]
  19. Labrijn AF, Buijsse AO, van den Bremer ET, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009 ; 27: 767–771. [CrossRef] [PubMed] [Google Scholar]
  20. Zhang T, Song X, Xu L, et al. The binding of an anti-PD-1 antibody to FcγRI has a profound impact on its biological functions. Cancer Immunol Immunother 2018 ; 67: 1079–1090. [CrossRef] [PubMed] [Google Scholar]
  21. Boyerinas B, Jochems C, Fantini M, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 2015 ; 3: 1148–1157. [CrossRef] [PubMed] [Google Scholar]
  22. Goletz C, Lischke T, Harnack U, et al. Glyco-engineered anti-human programmed death-ligand 1 antibody mediates stronger CD8 T cell activation than its normal glycosylated and non-glycosylated counterparts. Front Immunol 2018 ; 9: 1614. [CrossRef] [PubMed] [Google Scholar]
  23. Wilson NS, Yang B, Yang A, et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011 ; 19: 101–113. [CrossRef] [PubMed] [Google Scholar]
  24. Yu X, Chan HTC, Orr CM, et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 2018 ; 33: 664–675. [CrossRef] [PubMed] [Google Scholar]
  25. Bartholomaeus P, Semmler LY, Bukur T, et al. Cell contact–dependent priming and Fc interaction with CD32+ immune cells contribute to the TGN1412-triggered cytokine response. J Immunol 2014 ; 192: 2091–2098. [CrossRef] [PubMed] [Google Scholar]
  26. Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011 ; 331: 1612–1616. [Google Scholar]
  27. White AL, Chan HT, French RR, et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 2015 ; 27: 138–148. [CrossRef] [PubMed] [Google Scholar]
  28. Dahan R, Barnhart BC, Li F, et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 2016 ; 29: 820–831. [CrossRef] [PubMed] [Google Scholar]
  29. Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4–1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun 2018 ; 9: 4679. [Google Scholar]
  30. Qi X, Li F, Wu Y, et al. Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun 2019 ; 10: 2141. [Google Scholar]
  31. Zhang D, Goldberg MV, Chiu ML. Fc Engineering approaches to enhance the agonism and effector functions of an anti-OX40 antibody. J Biol Chem 2016 ; 291: 27134–27146. [CrossRef] [PubMed] [Google Scholar]
  32. Pelegrin M, Gros L, Piechaczyk M. Des effets vaccinaux pour les anticorps monoclonaux antiviraux: une nouvelle perspective thérapeutique ?. Med Sci (Paris) 2013 ; 29: 457–460. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.