Accès gratuit
Numéro |
Med Sci (Paris)
Volume 35, Numéro 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
|
|
---|---|---|
Page(s) | 975 - 981 | |
Section | La révolution des anticorps modulateurs de la réponse immunitaire en oncologie | |
DOI | https://doi.org/10.1051/medsci/2019241 | |
Publié en ligne | 6 janvier 2020 |
- Watier H.. Biothérapies, immunothérapies, thérapies ciblées, biomédicaments. De quoi faut-il parler ?. Med Sci (Paris) 2014 ; 30: 567–575. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Pottier J, Chastang R, Dumet C, Watier H. Rethinking the INN system for therapeutic antibodies. MAbs 2017 ; 9: 5–11. [CrossRef] [PubMed] [Google Scholar]
- Ribas A.. Anti-CTLA4 antibody clinical trials in melanoma. Update Cancer Ther 2007 ; 2: 133–191. [CrossRef] [PubMed] [Google Scholar]
- Keler T, Halk E, Vitale L, et al. Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 2003 ; 171: 6251–6259. [CrossRef] [PubMed] [Google Scholar]
- Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 2013 ; 1: 32–42. [CrossRef] [PubMed] [Google Scholar]
- Romano E, Kusio-Kobialka M, Foukas PG, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 2015 ; 112: 6140–6145. [CrossRef] [Google Scholar]
- Sharma A, Subudhi SK, Blando J, et al. Anti-CTLA-4 immunotherapy does not deplete FOXP3+ regulatory T cells (Tregs) in human cancers. Clin Cancer Res 2019 ; 25: 1233–1238. [CrossRef] [PubMed] [Google Scholar]
- Quezada SA, Peggs KS. Lost in translation: deciphering the mechanism of action of anti-human CTLA-4. Clin Cancer Res 2019 ; 25: 1130–1132. [CrossRef] [PubMed] [Google Scholar]
- Sanseviero E, O’Brien EM, Karras JR, et al. Anti-CTLA-4 activates intratumoral NK cells and combined with IL15/IL15Rα complexes enhances tumor control. Cancer Immunol Res 2019 ; 7: 1371–1380. [CrossRef] [PubMed] [Google Scholar]
- Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 2002 ; 99: 754–758. [Google Scholar]
- Arce Vargas F, Furness AJS, Litchfield K, et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 2018; 33: 649–63. [CrossRef] [PubMed] [Google Scholar]
- Ha D, Tanaka A, Kibayashi T, et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc Natl Acad Sci USA 2019 ; 116: 609–618. [CrossRef] [Google Scholar]
- Waight J, Manrique M, Gombos R, et al. Preclinical functional characterization of AGEN1181, a clinical stage Fc-engineered anti-CTLA-4 antibody for the treatment of patients with early and advanced malignancies. J Clin Oncol 2019 ; 37: 15 suppl e14126. [Google Scholar]
- Arce Vargas F, Furness AJS, Solomon I, et al. Fc-optimized anti-CD25 depletes tumor-infiltrating regulatory T cells and synergizes with PD-1 blockade to eradicate established tumors. Immunity 2017; 46: 577–86. [CrossRef] [PubMed] [Google Scholar]
- Bulliard Y, Jolicoeur R, Zhang J, et al. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol 2014 ; 92: 475–480. [CrossRef] [PubMed] [Google Scholar]
- Leroy X, Hoofd C, Cuende J, et al. A-TIGIT antagonist antibody EOS884448 shows dual mechanism of action by restoration of T cell effector functions and preferential depletion of Treg. Cancer Res 2018; 78 (13 suppl): LB–114. [Google Scholar]
- Dahan R, Sega E, Engelhardt J, et al. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 axis. Cancer Cell 2015 ; 28: 285–295. [CrossRef] [PubMed] [Google Scholar]
- Dumet C, Pottier J, Gouilleux-Gruart V, Watier H. Insights into the IgG heavy chain engineering patent landscape as applied to IgG4 antibody development. Mabs 2019 (sous presse). [Google Scholar]
- Labrijn AF, Buijsse AO, van den Bremer ET, et al. Therapeutic IgG4 antibodies engage in Fab-arm exchange with endogenous human IgG4 in vivo. Nat Biotechnol 2009 ; 27: 767–771. [CrossRef] [PubMed] [Google Scholar]
- Zhang T, Song X, Xu L, et al. The binding of an anti-PD-1 antibody to FcγRI has a profound impact on its biological functions. Cancer Immunol Immunother 2018 ; 67: 1079–1090. [CrossRef] [PubMed] [Google Scholar]
- Boyerinas B, Jochems C, Fantini M, et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol Res 2015 ; 3: 1148–1157. [CrossRef] [PubMed] [Google Scholar]
- Goletz C, Lischke T, Harnack U, et al. Glyco-engineered anti-human programmed death-ligand 1 antibody mediates stronger CD8 T cell activation than its normal glycosylated and non-glycosylated counterparts. Front Immunol 2018 ; 9: 1614. [CrossRef] [PubMed] [Google Scholar]
- Wilson NS, Yang B, Yang A, et al. An Fcγ receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell 2011 ; 19: 101–113. [CrossRef] [PubMed] [Google Scholar]
- Yu X, Chan HTC, Orr CM, et al. Complex interplay between epitope specificity and isotype dictates the biological activity of anti-human CD40 antibodies. Cancer Cell 2018 ; 33: 664–675. [CrossRef] [PubMed] [Google Scholar]
- Bartholomaeus P, Semmler LY, Bukur T, et al. Cell contact–dependent priming and Fc interaction with CD32+ immune cells contribute to the TGN1412-triggered cytokine response. J Immunol 2014 ; 192: 2091–2098. [CrossRef] [PubMed] [Google Scholar]
- Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011 ; 331: 1612–1616. [Google Scholar]
- White AL, Chan HT, French RR, et al. Conformation of the human immunoglobulin G2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell 2015 ; 27: 138–148. [CrossRef] [PubMed] [Google Scholar]
- Dahan R, Barnhart BC, Li F, et al. Therapeutic activity of agonistic, human anti-CD40 monoclonal antibodies requires selective FcγR engagement. Cancer Cell 2016 ; 29: 820–831. [CrossRef] [PubMed] [Google Scholar]
- Chin SM, Kimberlin CR, Roe-Zurz Z, et al. Structure of the 4–1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun 2018 ; 9: 4679. [PubMed] [Google Scholar]
- Qi X, Li F, Wu Y, et al. Optimization of 4–1BB antibody for cancer immunotherapy by balancing agonistic strength with FcγR affinity. Nat Commun 2019 ; 10: 2141. [PubMed] [Google Scholar]
- Zhang D, Goldberg MV, Chiu ML. Fc Engineering approaches to enhance the agonism and effector functions of an anti-OX40 antibody. J Biol Chem 2016 ; 291: 27134–27146. [CrossRef] [PubMed] [Google Scholar]
- Pelegrin M, Gros L, Piechaczyk M. Des effets vaccinaux pour les anticorps monoclonaux antiviraux: une nouvelle perspective thérapeutique ?. Med Sci (Paris) 2013 ; 29: 457–460. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.