Open Access
Issue
Med Sci (Paris)
Volume 35, Number 12, Décembre 2019
Anticorps monoclonaux en thérapeutique
Page(s) 957 - 965
Section La révolution des anticorps modulateurs de la réponse immunitaire en oncologie
DOI https://doi.org/10.1051/medsci/2019192
Published online 06 January 2020
  1. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin superfamily-CTLA-4. Nature 1987 ; 328: 267–270. [Google Scholar]
  2. Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992 ; 11: 3887–3895. [CrossRef] [PubMed] [Google Scholar]
  3. Leung HT, Bradshaw J, Cleaveland JS, Linsley PS. Cytotoxic T lymphocyte-associated molecule-4, a high-avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J Biol Chem 1995 ; 270: 25107–25114. [CrossRef] [PubMed] [Google Scholar]
  4. Valk E, Leung R, Kang H, et al. T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity 2006 ; 25: 807–821. [CrossRef] [PubMed] [Google Scholar]
  5. Read S, Greenwald R, Izcue A, et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J Immunol 2006 ; 177: 4376–4383. [CrossRef] [PubMed] [Google Scholar]
  6. Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008 ; 322: 271–275. [Google Scholar]
  7. Ren J, Han L, Tang J, et al. Foxp1 is critical for the maintenance of regulatory T-cell homeostasis and suppressive function. PLoS Biol 2019 ; 17: e3000270. [PubMed] [Google Scholar]
  8. Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017 ; 355: 1428–1433. [Google Scholar]
  9. Ahn E, Araki K, Hashimoto M, et al. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A 2018 ; 115: 4749–4754. [CrossRef] [PubMed] [Google Scholar]
  10. Kamphorst AO, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017 ; 355: 1423–1427. [Google Scholar]
  11. Haile ST, Dalal SP, Clements V, et al. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression. J Immunol 2013 ; 191: 2829–2836. [CrossRef] [PubMed] [Google Scholar]
  12. Chihara N, Madi A, Kondo T, et al. Induction and transcriptional regulation of the co-inhibitory gene module in T cells. Nature 2018 ; 558: 454–459. [Google Scholar]
  13. Franchini DM, Lanvin O, Tosolini M, et al. Microtubule-driven stress granule dynamics regulate inhibitory immune checkpoint expression in T cells. Cell Rep 2019 ; 26: 94–107 e7. [Google Scholar]
  14. Gong B, Kiyotani K, Sakata S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med 2019 ; 216: 982–1000. [CrossRef] [PubMed] [Google Scholar]
  15. Blank CU, Haanen JB, Ribas A, Schumacher TN. Cancer immunology. The cancer immunogram. Science 2016 ; 352: 658–660. [Google Scholar]
  16. Garon EB, Rizvi NA, Hui R, et al. Keynote-001 investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015 ; 372: 2018–2028. [Google Scholar]
  17. Nishino M, Ramaiya NH, Hatabu H, Hodi FS. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat Rev Clin Oncol 2017 ; 14: 655–668. [Google Scholar]
  18. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012 ; 12: 252–264. [Google Scholar]
  19. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015 ; 373: 23–34. [Google Scholar]
  20. Ansell SM, Lesokhin AM, Borrello I, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 2015 ; 372: 311–319. [Google Scholar]
  21. Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018 ; 24: 1852–1858. [CrossRef] [PubMed] [Google Scholar]
  22. Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014 ; 515: 568–571. [Google Scholar]
  23. Hu-Lieskovan S, Lisberg A, Zaretsky JM, et al. Tumor characteristics associated with benefit from pembrolizumab in advanced non-small cell lung cancer. Clin Cancer Res 2019 May 21. pii: clincanres.4275.2018. [Google Scholar]
  24. Ott PA, Bang YJ, Piha-Paul SA, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: keynote-028. J Clin Oncol 2019 ; 37: 318–327. [CrossRef] [PubMed] [Google Scholar]
  25. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019 ; 19: 133–150. [Google Scholar]
  26. McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016 ; 351: 1463–1469. [Google Scholar]
  27. Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med 2018 ; 378: 2093–2104. [Google Scholar]
  28. Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017 ; 377: 2500–2501. [Google Scholar]
  29. Prasad V, Kaestner V, Mailankody S. Cancer drugs approved based on biomarkers and not tumor type-FDA approval of pembrolizumab for mismatch repair-deficient solid cancers. JAMA Oncol 2018 ; 4: 157–158. [CrossRef] [PubMed] [Google Scholar]
  30. Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 2018 ; 18: 139–147. [Google Scholar]
  31. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018 ; 359: 1350–1355. [Google Scholar]
  32. Ménétrier-Caux C, Ray-Coquard I, Blay JY, Caux C. Lymphopenia in cancer patients and its effects on response to immunotherapy: an opportunity for combination with cytokines?. J Immunother Cancer 2019 ; 7: 85. [Google Scholar]
  33. Yi M, Jiao D, Xu H, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer 2018 ; 17: 129. [CrossRef] [PubMed] [Google Scholar]
  34. Costantini A, Julie C, Dumenil C, et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 2018 ; 7: e1452581. [CrossRef] [PubMed] [Google Scholar]
  35. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018 ; 560: 382–386. [Google Scholar]
  36. Morello S, Capone M, Sorrentino C, et al. Soluble CD73 as biomarker in patients with metastatic melanoma patients treated with nivolumab. J Transl Med 2017 ; 15: 244. [CrossRef] [PubMed] [Google Scholar]
  37. Huang AC, Postow MA, Orlowski RJ, et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017 ; 545: 60–65. [Google Scholar]
  38. Shukla SA, Bachireddy P, Schilling B, et al. Cancer-germline antigen expression discriminates clinical outcome to CTLA-4 blockade. Cell 2018 ; 173: 624–33 e8. [Google Scholar]
  39. Spranger S, Gajewski TF. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat Rev Cancer 2018 ; 18: 139–147. [Google Scholar]
  40. Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017 ; 170: 1109–19.e10. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.