Free Access
Issue
Med Sci (Paris)
Volume 35, Novembre 2019
Les Cahiers de Myologie
Page(s) 7 - 10
Section Actualités thérapeutiques
DOI https://doi.org/10.1051/medsci/2019188
Published online 20 December 2019
  1. Skuk D, Goulet M, Tremblay JP. Intramuscular transplantation of myogenic cells in primates: importance of needle size, cell number, and injection volume. Cell Transplant 2014; 23: 13–25. [CrossRef] [PubMed] [Google Scholar]
  2. Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309: 2064–7. [Google Scholar]
  3. Collins CA, Olsen I, Zammit PS, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122: 289–301. [CrossRef] [PubMed] [Google Scholar]
  4. Alameddine HS, Dehaupas M, Fardeau M. Regeneration of skeletal muscle fibers from autologous satellite cells multiplied in vitro. An experimental model for testing cultured cell myogenicity. Muscle Nerve 1989; 12: 544–55. [Google Scholar]
  5. Skuk D, Goulet M, Tremblay JP. Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle. J Neuropathol Exp Neurol 2011; 70: 770–8. [CrossRef] [PubMed] [Google Scholar]
  6. Crahès M, Bories MC, Viquin JT, et al. Long-term engraftment (16 years) of myoblasts in a human infarcted heart. Stem Cells Transl Med 2018; 7: 705–8. [CrossRef] [PubMed] [Google Scholar]
  7. Tremblay JP, Malouin F, Roy R, et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 1993; 2: 99–112. [CrossRef] [PubMed] [Google Scholar]
  8. Skuk D, Goulet M, Roy B, et al. Dystrophin expression in muscles of Duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 2006; 65: 371–86. [CrossRef] [PubMed] [Google Scholar]
  9. Dellavalle A, Sampaolesi M, Tonlorenzi R, et al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 2007; 9: 255–67. [CrossRef] [PubMed] [Google Scholar]
  10. Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008; 3: 301–13. [Google Scholar]
  11. Cossu G, Previtali SC, Napolitano S, et al. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 2015; 7: 1513–28. [CrossRef] [PubMed] [Google Scholar]
  12. Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 2002; 157: 851–64. [CrossRef] [PubMed] [Google Scholar]
  13. Rouger K, Larcher T, Dubreil L, et al. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in Duchenne muscular dystrophy dogs. Am J Pathol 2011; 179: 2501–18. [CrossRef] [PubMed] [Google Scholar]
  14. Torrente Y, Belicchi M, Marchesi C, et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant 2007; 16: 563–77. [CrossRef] [PubMed] [Google Scholar]
  15. Vauchez K, Marolleau JP, Schmid M, et al. Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Mol Ther 2009; 17: 1948–58. [CrossRef] [PubMed] [Google Scholar]
  16. Jean E, Laoudj-Chenivesse D, Notarnicola C, et al. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. J Cell Mol Med 2011; 15: 119–33. [CrossRef] [PubMed] [Google Scholar]
  17. Chal J, Al Tanoury Z, Hestin M, et al. Generation of human muscle fibers and satellite-like cells from human pluripotent stem cells in vitro. Nat Protoc 2016; 11: 1833–50. [CrossRef] [PubMed] [Google Scholar]
  18. Tedesco FS, Gerli MF, Perani L, et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 2012; 4: 140ra89. [CrossRef] [PubMed] [Google Scholar]
  19. Quattrocelli M, Swinnen M, Giacomazzi G, et al. Mesodermal iPSC-derived progenitor cells functionally regenerate cardiac and skeletal muscle. J Clin Invest 2015; 125: 4463–82. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.