Open Access
Issue
Med Sci (Paris)
Volume 35, Number 11, Novembre 2019
Page(s) 859 - 865
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019167
Published online 17 December 2019
  1. Popova S, Lange S, Probst C, et al. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome : a systematic review and meta-analysis. Lancet Glob Health 2017 ; 5 : e290–e299. [Google Scholar]
  2. World Health Organization. Global status report on alcohol and health. https://www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2018/en 2018. [Google Scholar]
  3. Toutain S, Germanaud D. Exposition prénatale à l’alcool et troubles causés par l’alcoolisation fœtale. Expertise collective Inserm « Déficiences intellectuelles ». http://www.ipubli.inserm.fr 2016. [Google Scholar]
  4. Chasnoff IJ, Wells AM, King L. Misdiagnosis and missed diagnoses in foster and adopted children with prenatal alcohol exposure. Pediatrics 2015 ; 135 : 264–70. [PubMed] [Google Scholar]
  5. Brownell M, Enns JE, Hanlon-Dearman A, et al. Health, social, education, and justice outcomes of manitoba first nations children diagnosed with fetal alcohol spectrum disorder: A population-based cohort study of linked administrative data. Can J Psychiatry 2018 ; 30 : 706743718816064. [Google Scholar]
  6. Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 2008 ; 20 : 775–803. [CrossRef] [PubMed] [Google Scholar]
  7. Warren Z, McPheeters ML, Sathe N, et al. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 2011 ; 127 : e1303–11. [PubMed] [Google Scholar]
  8. Gutierrez HL, Hund L, Shrestha S, et al. Ethylglucuronide in maternal hair as a biomarker of prenatal alcohol exposure. Alcohol 2015 ; 49 : 617–23. [CrossRef] [PubMed] [Google Scholar]
  9. Bakhireva LN, Savage DD. Focus on: biomarkers of fetal alcohol exposure and fetal alcohol effects. Alcohol Res Health 2011 ; 34 : 56–63. [PubMed] [Google Scholar]
  10. Karaçay B, Li S, Bonthius DJ. Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss and gene expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res 2008 ; 32 : 1439–50. [Google Scholar]
  11. Ramadoss J, Lunde ER, Chen WJ, et al. Temporal vulnerability of fetal cerebellar Purkinje cells to chronic binge alcohol exposure: ovine model. Alcohol Clin Exp Res 2007 ; 31 : 1738–45. [Google Scholar]
  12. Naassila M, Pierrefiche O. GluN2B Subunit of the NMDA Receptor: The keystone of the effects of alcohol during neurodevelopment. Neurochem Res 2019 ; 44 : 78–88. [CrossRef] [PubMed] [Google Scholar]
  13. Ramoz N, Gorwood P. Genetic factors in alcohol dependence. Presse Med 2018 ; 47 : 547–553. [CrossRef] [PubMed] [Google Scholar]
  14. Gude NM, Roberts CT, Kalionis B, et al. Growth and function of the normal human placenta. Thromb Res 2004 ; 114 : 397–407. [CrossRef] [PubMed] [Google Scholar]
  15. Alsat E, Guibourdenche J, Couturier A, et al. Physiological role of human placental growth hormone. Mol Cell Endocrinol 1998 ; 140 : 121–7. [CrossRef] [PubMed] [Google Scholar]
  16. Clark DE, Smith SK, Licence D, et al. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol 1998 ; 159 : 459–67. [CrossRef] [PubMed] [Google Scholar]
  17. Woods L, Perez-Garcia V, Hemberger M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol (Lausanne) 2018 ; 9 : 570. [CrossRef] [PubMed] [Google Scholar]
  18. Belagodu AP, Fleming S, Galvez R. Neocortical developmental analysis of vasculature and their growth factors offer new insight into fragile X syndrome abnormalities. Dev Neurobiol 2017 ; 77 : 1321–33. [CrossRef] [PubMed] [Google Scholar]
  19. Bergen NE, Bouwland-Both MI, Steegers-Theunissen RP, et al. Early pregnancy maternal and fetal angiogenic factors and fetal and childhood growth: the Generation R Study. Hum Reprod 2015 ; 30 : 1302–13. [CrossRef] [PubMed] [Google Scholar]
  20. Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010 ; 89 : 219–29. [CrossRef] [PubMed] [Google Scholar]
  21. Williams JK, Baptista PM, Daunais JB, et al. The effects of ethanol consumption on vasculogenesis potential in nonhuman primates. Alcohol Clin Exp Res 2008 ; 32 : 155–61. [Google Scholar]
  22. Radek KA, Kovacs EJ, Gallo RL, et al. Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2008 ; 295 : H174–84. [PubMed] [Google Scholar]
  23. Radek KA, Matthies AM, Burns AL, et al. Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing. Am J Physiol Heart Circ Physiol 2005 ; 289 : H1084–90. [PubMed] [Google Scholar]
  24. Wang G, Zhong S, Zhang SY, et al. Angiogenesis is repressed by ethanol exposure during chick embryonic development. J Appl Toxicol 2016 ; 36 : 692–701. [Google Scholar]
  25. Amankwah KS, Kaufmann RC. Ultrastructure of human placenta: effects of maternal drinking. Gynecol Obstet Invest 1984 ; 18 : 311–6. [CrossRef] [PubMed] [Google Scholar]
  26. Padmanabhan R. Histological and histochemical changes of the placenta in fetal alcohol syndrome due to maternal administration of acute doses of ethanol in the mouse. Drug Alcohol Depend 1985 ; 16 : 229–39. [CrossRef] [PubMed] [Google Scholar]
  27. Kaminski M, Rumeau C, Schwartz D. Alcohol consumption in pregnant women and the outcome of pregnancy. Alcohol Clin Exp Res 1978 ; 2 : 155–63. [Google Scholar]
  28. Gabriel K, Hofmann C, Glavas M, et al. The hormonal effects of alcohol use on the mother and fetus. Alcohol Health Res World 1998 ; 22 : 170–7. [PubMed] [Google Scholar]
  29. Burd L, Roberts D, Olson M, et al. Ethanol and the placenta: A review. J Matern Fetal Neonatal Med 2007 ; 20 : 361–75. [CrossRef] [PubMed] [Google Scholar]
  30. Lecuyer M, Laquerrière A, Bekri S, et al. PLGF, a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathol Commun 2017 ; 5 : 44. [Google Scholar]
  31. Rosenberg MJ, Wolff CR, El-Emawy A, et al. Effects of moderate drinking during pregnancy on placental gene expression. Alcohol 2010 ; 44 : 673–90. [CrossRef] [PubMed] [Google Scholar]
  32. Davis-Anderson KL, Berger S, Lunde-Young ER, et al. Placental proteomics reveal insights into fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2017 ; 41 : 1551–8. [Google Scholar]
  33. Haghighi Poodeh S, Salonurmi T, Nagy I, et al. Alcohol-induced premature permeability in mouse placenta-yolk sac barriers in vivo. Placenta 2012 ; 33 : 866–73. [CrossRef] [PubMed] [Google Scholar]
  34. Kalisch-Smith JI, Outhwaite JE, Simmons DG, et al. Alcohol exposure impairs trophoblast survival and alters subtype-specific gene expression in vitro. Placenta 2016 ; 46 : 87–91. [CrossRef] [PubMed] [Google Scholar]
  35. Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 2005 ; 436 : 193–200. [Google Scholar]
  36. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [Google Scholar]
  37. Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016 ; 36 : 1481–507. [CrossRef] [PubMed] [Google Scholar]
  38. Hodivala-Dilke K. alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 2008 ; 20 : 514–9. [CrossRef] [PubMed] [Google Scholar]
  39. Wilhelm CJ, Guizzetti M. Fetal alcohol spectrum disorders: an overview from the glia perspective. Front Integr Neurosci 2016 ; 9 : 65. [CrossRef] [PubMed] [Google Scholar]
  40. Jégou S, El Ghazi F, de Lendeu PK, et al. Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 2012 ; 72 : 952–60. [CrossRef] [PubMed] [Google Scholar]
  41. Holbrook BD, Davies S, Cano S, et al. The association between prenatal alcohol exposure and protein expression in human placenta. Birth Defects Res 2019 ; Mar 19. [Google Scholar]
  42. Loke YJ, Muggli E, Nguyen L, et al. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics 2018 ; 10 : 981–91. [CrossRef] [PubMed] [Google Scholar]
  43. Carter RC, Chen J, Li Q, et al. Alcohol-related alterations in placental imprinted gene expression in humans mediate effects of prenatal alcohol exposure on postnatal growth. Alcohol Clin Exp Res 2018 ; doi: 10.1111/acer.13808. [Google Scholar]
  44. Lan N, Chiu MP, Ellis L, et al. Prenatal alcohol exposure and prenatal stress differentially alter glucocorticoid signaling in the placenta and fetal brain. Neuroscience 2017 ; 342 : 167–79. [PubMed] [Google Scholar]
  45. Broere-Brown ZA, Schalekamp-Timmermans S, Jaddoe VWV, et al. Fetal growth and placental growth factor umbilical cord blood levels. Fetal Diagn Ther 2018 ; 43 : 26–33. [CrossRef] [PubMed] [Google Scholar]
  46. Cao Y, Ji WR, Qi P, et al. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 1997 ; 235 : 493–8. [Google Scholar]
  47. Luna RL, Kay VR, Rätsep MT, et al. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol Hum Reprod 2016 ; 22 : 130–42. [Google Scholar]
  48. Van Bergen T, Etienne I, Cunningham F, et al. The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res 2019 ; 69 : 116–36. [CrossRef] [PubMed] [Google Scholar]
  49. Clarke DW, Steenaart NA, Slack CJ, et al. Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol. Can J Physiol Pharmacol 1986 ; 64 : 1060–7. [CrossRef] [PubMed] [Google Scholar]
  50. Ren H, Salous AK, Paul JM, et al. Functional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains. J Biol Chem 2008 ; 283 : 8250–7. [CrossRef] [PubMed] [Google Scholar]
  51. Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-mediated neurotransmission in the cerebellar cortex–recent advances. Cerebellum 2015 ; 14 : 438–46. [CrossRef] [PubMed] [Google Scholar]
  52. Tsai HH, Niu J, Munji R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 2016 ; 351 : 379–84. [Google Scholar]
  53. Won C, Lin Z, Kumar TP, et al. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 2013 ; 4 : 2149. [CrossRef] [PubMed] [Google Scholar]
  54. Niemelä O. Biomarker-based approaches for assessing alcohol use disorders. Int J Environ Res Public Health 2016 ; 13 : 166. [Google Scholar]
  55. Kintz P, Villain M, Mandel A, et al. Les marqueurs de l’éthylisme chronique. Focus sur les approches immuno-chimiques. Ann Toxicol Anal 2009 ; 21 : 21–5. [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.