Open Access
Numéro |
Med Sci (Paris)
Volume 35, Numéro 11, Novembre 2019
|
|
---|---|---|
Page(s) | 859 - 865 | |
Section | M/S Revues | |
DOI | https://doi.org/10.1051/medsci/2019167 | |
Publié en ligne | 17 décembre 2019 |
- Popova S, Lange S, Probst C, et al. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome : a systematic review and meta-analysis. Lancet Glob Health 2017 ; 5 : e290–e299. [Google Scholar]
- World Health Organization. Global status report on alcohol and health. https://www.who.int/substance_abuse/publications/global_alcohol_report/gsr_2018/en 2018. [Google Scholar]
- Toutain S, Germanaud D. Exposition prénatale à l’alcool et troubles causés par l’alcoolisation fœtale. Expertise collective Inserm « Déficiences intellectuelles ». http://www.ipubli.inserm.fr 2016. [Google Scholar]
- Chasnoff IJ, Wells AM, King L. Misdiagnosis and missed diagnoses in foster and adopted children with prenatal alcohol exposure. Pediatrics 2015 ; 135 : 264–70. [PubMed] [Google Scholar]
- Brownell M, Enns JE, Hanlon-Dearman A, et al. Health, social, education, and justice outcomes of manitoba first nations children diagnosed with fetal alcohol spectrum disorder: A population-based cohort study of linked administrative data. Can J Psychiatry 2018 ; 30 : 706743718816064. [Google Scholar]
- Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol 2008 ; 20 : 775–803. [CrossRef] [PubMed] [Google Scholar]
- Warren Z, McPheeters ML, Sathe N, et al. A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 2011 ; 127 : e1303–11. [PubMed] [Google Scholar]
- Gutierrez HL, Hund L, Shrestha S, et al. Ethylglucuronide in maternal hair as a biomarker of prenatal alcohol exposure. Alcohol 2015 ; 49 : 617–23. [CrossRef] [PubMed] [Google Scholar]
- Bakhireva LN, Savage DD. Focus on: biomarkers of fetal alcohol exposure and fetal alcohol effects. Alcohol Res Health 2011 ; 34 : 56–63. [PubMed] [Google Scholar]
- Karaçay B, Li S, Bonthius DJ. Maturation-dependent alcohol resistance in the developing mouse: cerebellar neuronal loss and gene expression during alcohol-vulnerable and -resistant periods. Alcohol Clin Exp Res 2008 ; 32 : 1439–50. [Google Scholar]
- Ramadoss J, Lunde ER, Chen WJ, et al. Temporal vulnerability of fetal cerebellar Purkinje cells to chronic binge alcohol exposure: ovine model. Alcohol Clin Exp Res 2007 ; 31 : 1738–45. [Google Scholar]
- Naassila M, Pierrefiche O. GluN2B Subunit of the NMDA Receptor: The keystone of the effects of alcohol during neurodevelopment. Neurochem Res 2019 ; 44 : 78–88. [CrossRef] [PubMed] [Google Scholar]
- Ramoz N, Gorwood P. Genetic factors in alcohol dependence. Presse Med 2018 ; 47 : 547–553. [CrossRef] [PubMed] [Google Scholar]
- Gude NM, Roberts CT, Kalionis B, et al. Growth and function of the normal human placenta. Thromb Res 2004 ; 114 : 397–407. [CrossRef] [PubMed] [Google Scholar]
- Alsat E, Guibourdenche J, Couturier A, et al. Physiological role of human placental growth hormone. Mol Cell Endocrinol 1998 ; 140 : 121–7. [CrossRef] [PubMed] [Google Scholar]
- Clark DE, Smith SK, Licence D, et al. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol 1998 ; 159 : 459–67. [CrossRef] [PubMed] [Google Scholar]
- Woods L, Perez-Garcia V, Hemberger M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol (Lausanne) 2018 ; 9 : 570. [CrossRef] [PubMed] [Google Scholar]
- Belagodu AP, Fleming S, Galvez R. Neocortical developmental analysis of vasculature and their growth factors offer new insight into fragile X syndrome abnormalities. Dev Neurobiol 2017 ; 77 : 1321–33. [CrossRef] [PubMed] [Google Scholar]
- Bergen NE, Bouwland-Both MI, Steegers-Theunissen RP, et al. Early pregnancy maternal and fetal angiogenic factors and fetal and childhood growth: the Generation R Study. Hum Reprod 2015 ; 30 : 1302–13. [CrossRef] [PubMed] [Google Scholar]
- Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res 2010 ; 89 : 219–29. [CrossRef] [PubMed] [Google Scholar]
- Williams JK, Baptista PM, Daunais JB, et al. The effects of ethanol consumption on vasculogenesis potential in nonhuman primates. Alcohol Clin Exp Res 2008 ; 32 : 155–61. [Google Scholar]
- Radek KA, Kovacs EJ, Gallo RL, et al. Acute ethanol exposure disrupts VEGF receptor cell signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2008 ; 295 : H174–84. [PubMed] [Google Scholar]
- Radek KA, Matthies AM, Burns AL, et al. Acute ethanol exposure impairs angiogenesis and the proliferative phase of wound healing. Am J Physiol Heart Circ Physiol 2005 ; 289 : H1084–90. [PubMed] [Google Scholar]
- Wang G, Zhong S, Zhang SY, et al. Angiogenesis is repressed by ethanol exposure during chick embryonic development. J Appl Toxicol 2016 ; 36 : 692–701. [Google Scholar]
- Amankwah KS, Kaufmann RC. Ultrastructure of human placenta: effects of maternal drinking. Gynecol Obstet Invest 1984 ; 18 : 311–6. [CrossRef] [PubMed] [Google Scholar]
- Padmanabhan R. Histological and histochemical changes of the placenta in fetal alcohol syndrome due to maternal administration of acute doses of ethanol in the mouse. Drug Alcohol Depend 1985 ; 16 : 229–39. [CrossRef] [PubMed] [Google Scholar]
- Kaminski M, Rumeau C, Schwartz D. Alcohol consumption in pregnant women and the outcome of pregnancy. Alcohol Clin Exp Res 1978 ; 2 : 155–63. [Google Scholar]
- Gabriel K, Hofmann C, Glavas M, et al. The hormonal effects of alcohol use on the mother and fetus. Alcohol Health Res World 1998 ; 22 : 170–7. [PubMed] [Google Scholar]
- Burd L, Roberts D, Olson M, et al. Ethanol and the placenta: A review. J Matern Fetal Neonatal Med 2007 ; 20 : 361–75. [CrossRef] [PubMed] [Google Scholar]
- Lecuyer M, Laquerrière A, Bekri S, et al. PLGF, a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathol Commun 2017 ; 5 : 44. [Google Scholar]
- Rosenberg MJ, Wolff CR, El-Emawy A, et al. Effects of moderate drinking during pregnancy on placental gene expression. Alcohol 2010 ; 44 : 673–90. [CrossRef] [PubMed] [Google Scholar]
- Davis-Anderson KL, Berger S, Lunde-Young ER, et al. Placental proteomics reveal insights into fetal alcohol spectrum disorders. Alcohol Clin Exp Res 2017 ; 41 : 1551–8. [Google Scholar]
- Haghighi Poodeh S, Salonurmi T, Nagy I, et al. Alcohol-induced premature permeability in mouse placenta-yolk sac barriers in vivo. Placenta 2012 ; 33 : 866–73. [CrossRef] [PubMed] [Google Scholar]
- Kalisch-Smith JI, Outhwaite JE, Simmons DG, et al. Alcohol exposure impairs trophoblast survival and alters subtype-specific gene expression in vitro. Placenta 2016 ; 46 : 87–91. [CrossRef] [PubMed] [Google Scholar]
- Carmeliet P, Tessier-Lavigne M. Common mechanisms of nerve and blood vessel wiring. Nature 2005 ; 436 : 193–200. [Google Scholar]
- Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011 ; 473 : 298–307. [Google Scholar]
- Rempe RG, Hartz AMS, Bauer B. Matrix metalloproteinases in the brain and blood-brain barrier: Versatile breakers and makers. J Cereb Blood Flow Metab 2016 ; 36 : 1481–507. [CrossRef] [PubMed] [Google Scholar]
- Hodivala-Dilke K. alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol 2008 ; 20 : 514–9. [CrossRef] [PubMed] [Google Scholar]
- Wilhelm CJ, Guizzetti M. Fetal alcohol spectrum disorders: an overview from the glia perspective. Front Integr Neurosci 2016 ; 9 : 65. [CrossRef] [PubMed] [Google Scholar]
- Jégou S, El Ghazi F, de Lendeu PK, et al. Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 2012 ; 72 : 952–60. [CrossRef] [PubMed] [Google Scholar]
- Holbrook BD, Davies S, Cano S, et al. The association between prenatal alcohol exposure and protein expression in human placenta. Birth Defects Res 2019 ; Mar 19. [Google Scholar]
- Loke YJ, Muggli E, Nguyen L, et al. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics 2018 ; 10 : 981–91. [CrossRef] [PubMed] [Google Scholar]
- Carter RC, Chen J, Li Q, et al. Alcohol-related alterations in placental imprinted gene expression in humans mediate effects of prenatal alcohol exposure on postnatal growth. Alcohol Clin Exp Res 2018 ; doi: 10.1111/acer.13808. [Google Scholar]
- Lan N, Chiu MP, Ellis L, et al. Prenatal alcohol exposure and prenatal stress differentially alter glucocorticoid signaling in the placenta and fetal brain. Neuroscience 2017 ; 342 : 167–79. [PubMed] [Google Scholar]
- Broere-Brown ZA, Schalekamp-Timmermans S, Jaddoe VWV, et al. Fetal growth and placental growth factor umbilical cord blood levels. Fetal Diagn Ther 2018 ; 43 : 26–33. [CrossRef] [PubMed] [Google Scholar]
- Cao Y, Ji WR, Qi P, et al. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 1997 ; 235 : 493–8. [Google Scholar]
- Luna RL, Kay VR, Rätsep MT, et al. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol Hum Reprod 2016 ; 22 : 130–42. [Google Scholar]
- Van Bergen T, Etienne I, Cunningham F, et al. The role of placental growth factor (PlGF) and its receptor system in retinal vascular diseases. Prog Retin Eye Res 2019 ; 69 : 116–36. [CrossRef] [PubMed] [Google Scholar]
- Clarke DW, Steenaart NA, Slack CJ, et al. Pharmacokinetics of ethanol and its metabolite, acetaldehyde, and fetolethality in the third-trimester pregnant guinea pig for oral administration of acute, multiple-dose ethanol. Can J Physiol Pharmacol 1986 ; 64 : 1060–7. [CrossRef] [PubMed] [Google Scholar]
- Ren H, Salous AK, Paul JM, et al. Functional interactions of alcohol-sensitive sites in the N-methyl-D-aspartate receptor M3 and M4 domains. J Biol Chem 2008 ; 283 : 8250–7. [CrossRef] [PubMed] [Google Scholar]
- Valenzuela CF, Jotty K. Mini-Review: Effects of Ethanol on GABAA Receptor-mediated neurotransmission in the cerebellar cortex–recent advances. Cerebellum 2015 ; 14 : 438–46. [CrossRef] [PubMed] [Google Scholar]
- Tsai HH, Niu J, Munji R, et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 2016 ; 351 : 379–84. [Google Scholar]
- Won C, Lin Z, Kumar TP, et al. Autonomous vascular networks synchronize GABA neuron migration in the embryonic forebrain. Nat Commun 2013 ; 4 : 2149. [CrossRef] [PubMed] [Google Scholar]
- Niemelä O. Biomarker-based approaches for assessing alcohol use disorders. Int J Environ Res Public Health 2016 ; 13 : 166. [Google Scholar]
- Kintz P, Villain M, Mandel A, et al. Les marqueurs de l’éthylisme chronique. Focus sur les approches immuno-chimiques. Ann Toxicol Anal 2009 ; 21 : 21–5. [CrossRef] [EDP Sciences] [Google Scholar]
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.