Open Access
Med Sci (Paris)
Volume 35, Number 8-9, Août–Septembre 2019
Page(s) 667 - 673
Section M/S Revues
Published online 18 September 2019
  1. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 2015 ; 16 : 421–433. [CrossRef] [PubMed] [Google Scholar]
  2. Lodge R, Ferreira Barbosa JA, Lombard-Vadnais F, et al. Host microRNAs-221 and -222 inhibit hiv-1 entry in macrophages by targeting the CD4 viral receptor. Cell Rep 2017 ; 21 : 141–153. [CrossRef] [PubMed] [Google Scholar]
  3. Ingle H, Kumar S, Raut AA, et al. The microRNA miR-485 targets host and influenza virus transcripts to regulate antiviral immunity and restrict viral replication. Sci Signal 2015; 8 : ra126. [Google Scholar]
  4. Santhakumar D, Forster T, Laqtom NN, et al. Combined agonist-antagonist genome-wide functional screening identifies broadly active antiviral microRNAs. Proc Natl Acad Sci USA 2010 ; 107 : 13830–13835. [CrossRef] [Google Scholar]
  5. Lewis BP, Shih I, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003 ; 115 : 787–798. [CrossRef] [PubMed] [Google Scholar]
  6. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 ; 120 : 15–20. [CrossRef] [PubMed] [Google Scholar]
  7. John B, Enright AJ, Aravin A, et al. Human microRNA targets. PLoS Biol 2004 ; 2 : e363. [CrossRef] [PubMed] [Google Scholar]
  8. Krek A, Grun D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005 ; 37 : 495–500. [Google Scholar]
  9. Kiriakidou M, Nelson PT, Kouranov A, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev 2004 ; 18 : 18: 1165–1178. [CrossRef] [PubMed] [Google Scholar]
  10. Hsu PW-C, Lin L-Z, Hsu S-D, et al. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 2007; 35 : D381–5. [CrossRef] [PubMed] [Google Scholar]
  11. Pinzón N, Li B, Martinez L, et al. microRNA target prediction programs predict many false positives. Genome Res 2017 ; 27 : 234–245. [CrossRef] [PubMed] [Google Scholar]
  12. Dölken L, Malterer G, Erhard F, et al. Systematic analysis of viral and cellular microRNA targets in cells latently infected with human gamma-herpesviruses by RISC immunoprecipitation assay. Cell Host Microbe 2010 ; 7 : 324–334. [CrossRef] [PubMed] [Google Scholar]
  13. Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 2009 ; 460 : 479–486. [CrossRef] [PubMed] [Google Scholar]
  14. Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 2010 ; 141 : 129–141. [CrossRef] [PubMed] [Google Scholar]
  15. Jopling CL, Yi M, Lancaster AM, et al. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005 ; 309 : 1577–1581. [Google Scholar]
  16. Henke JI, Goergen D, Zheng J, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 2008 ; 27 : 3300–3310. [CrossRef] [PubMed] [Google Scholar]
  17. Mengardi C, Ohlmann T. miR-122 continue de nous surprendre. Med Sci (Paris) 2015 ; 31 : 612–615. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  18. Li Y, Yamane D, Lemon SM. Dissecting the roles of the 5’exoribonucleases Xrn1 and Xrn2 in restricting hepatitis C virus replication. J Virol 2015 ; 89 : 4857–4865. [CrossRef] [PubMed] [Google Scholar]
  19. Gao L, Guo XK, Wang L, et al. MicroRNA 181 suppresses porcine reproductive and respiratory syndrome virus (PRRSV) infection by targeting PRRSV receptor CD163. J Virol 2013 ; 87 : 8808–8812. [CrossRef] [PubMed] [Google Scholar]
  20. Chen Z, Ye J, Ashraf U, et al. MicroRNA-33a-5p Modulates japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J Virol 2016 ; 90 : 3722–3734. [CrossRef] [PubMed] [Google Scholar]
  21. Ho BC, Yu SL, Chen JJW, et al. Enterovirus-induced miR-141 contributes to shutoff of host protein translation by targeting the translation initiation factor eIF4E. Cell Host Microbe 2011 ; 9 : 58–69. [CrossRef] [PubMed] [Google Scholar]
  22. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity 2007 ; 26 : 133–137. [CrossRef] [PubMed] [Google Scholar]
  23. Rosenberger CM, Podyminogin RL, Diercks AH, et al. miR-144 attenuates the host response to influenza virus by targeting the TRAF6-IRF7 signaling axis. PLoS Pathog 2017 ; 13 : e1006305. [CrossRef] [PubMed] [Google Scholar]
  24. Backes S, Shapiro JS, Sabin LR, et al. Degradation of host microRNAs by Poxvirus poly(A) polymerase reveals terminal RNA methylation as a protective antiviral mechanism. Cell Host Microbe 2012 ; 12 : 200–210. [CrossRef] [PubMed] [Google Scholar]
  25. Buck AH, Perot J, Chisholm MA, et al. Post-transcriptional regulation of miR-27 in murine cytomegalovirus infection. RNA 2010 ; 16 : 307–315. [CrossRef] [PubMed] [Google Scholar]
  26. Libri V, Helwak A, Miesen P, et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc Natl Acad Sci USA 2012 ; 109 : 279–284. [CrossRef] [Google Scholar]
  27. Marcinowski L, Tanguy M, Krmpotic A, et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog 2012 ; 8 : e1002510. [CrossRef] [PubMed] [Google Scholar]
  28. Ameres SL, Horwich MD, Hung JH, et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010 ; 328 : 1534–1539. [Google Scholar]
  29. Chakraborty C, Sharma AR, Sharma G, et al. Therapeutic miRNA and siRNA: Moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017 ; 8 : 132–143. [CrossRef] [PubMed] [Google Scholar]
  30. Peng S, Wang J, Wei S, et al. Endogenous cellular microRNAs mediate antiviral defense against influenza A virus. Mol Ther Nucleic Acids 2018 ; 10 : 361–375. [CrossRef] [PubMed] [Google Scholar]
  31. Janssen HLA, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013 ; 368 : 1685–1694. [Google Scholar]
  32. van der Ree MH, van der Meer AJ, de Bruijne J, et al. Long-term safety and efficacy of microRNA-targeted therapy in chronic hepatitis C patients. Antiviral Res 2014 ; 111 : 53–59. [CrossRef] [PubMed] [Google Scholar]
  33. van der Ree MH, de Vree JM, Stelma F, et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet 2017 ; 389 : 709–717. [CrossRef] [PubMed] [Google Scholar]
  34. Waring BM, Sjaastad LE, Fiege JK, et al. MicroRNA-based attenuation of influenza virus across susceptible hosts. J Virol 2017 ; 92 : e01741–e01717. [Google Scholar]
  35. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015 ; 14 : 642–662. [CrossRef] [PubMed] [Google Scholar]
  36. Kelly EJ, Hadac EM, Greiner S, et al. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat Med 2008 ; 14 : 1278–1283. [CrossRef] [PubMed] [Google Scholar]
  37. Bogerd HP, Skalsky RL, Kennedy EM, et al. Replication of many human viruses is refractory to inhibition by endogenous cellular microRNAs. J Virol. 2014 ; 88 : 8065–8076. [CrossRef] [PubMed] [Google Scholar]
  38. Scheel TKH, Luna JM, Liniger M, et al. A broad RNA virus survey reveals both miRNA dependence and functional sequestration. Cell Host Microbe 2016 ; 19 : 409–423. [CrossRef] [PubMed] [Google Scholar]
  39. Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. PLoS Pathog 2012 ; 8 : e1003018. [CrossRef] [PubMed] [Google Scholar]
  40. Sedano CD, Sarnow P. Hepatitis C virus subverts liver-specific miR-122 to protect the viral genome from exoribonuclease Xrn2. Cell Host Microbe 2014 ; 16 : 257–264. [CrossRef] [PubMed] [Google Scholar]
  41. Masaki T, Arend KC, Li Y, et al. miR-122 Stimulates hepatitis C virus RNA synthesis by altering the balance of viral RNAs engaged in replication versus translation. Cell Host Microbe 2015 ; 17 : 217–228. [CrossRef] [PubMed] [Google Scholar]
  42. Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010 ; 327 : 198–201. [Google Scholar]
  43. Trobaugh DW, Gardner CL, Sun C, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature 2014 ; 506 : 245–248. [CrossRef] [PubMed] [Google Scholar]
  44. Hazra B, Kumawat KL, Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signal 2017; 10 : eaaf5185. [Google Scholar]
  45. Stewart CR, Marsh GA, Jenkins KA, et al. Promotion of Hendra virus replication by microRNA 146a. J Virol 2013 ; 87 : 3782–3791. [CrossRef] [PubMed] [Google Scholar]
  46. Otsuka M, Jing Q, Georgel P, et al. Hypersusceptibility to vesicular stomatitis virus infection in Dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity 2007 ; 27 : 123–134. [CrossRef] [PubMed] [Google Scholar]
  47. Guo X-k., Zhang Q, Gao L, et al. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J Virol 2013 ; 87 : 1159–1171. [CrossRef] [PubMed] [Google Scholar]
  48. Li L, Gao F, Jiang Y, et al. Cellular miR-130b inhibits replication of porcine reproductive and respiratory syndrome virus in vitro and in vivo. Sci Rep 2015; 5. [Google Scholar]
  49. McCaskill JL, Ressel S, Alber A, et al. Broad-spectrum inhibition of respiratory virus infection by microRNA mimics targeting p38 MAPK signaling. Mol Ther Nucleic Acids 2017 ; 7 : 256–266. [CrossRef] [PubMed] [Google Scholar]
  50. Wu N, Gao N, Fan D, et al. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes Infect 2014 ; 16 : 911–922. [Google Scholar]
  51. Chen Z, Ye J, Ashraf U, et al. MicroRNA-33a-5p Modulates japanese encephalitis virus replication by targeting eukaryotic translation elongation factor 1A1. J Virol 2016 ; 90 : 3722–3734. [CrossRef] [PubMed] [Google Scholar]
  52. Smith JL, Jeng S, McWeeney SK, et al. A microRNA screen identifies the Wnt signaling pathway as a regulator of the interferon response during flavivirus infection. J Virol 2017 ; 91 : e02388–e02316. [PubMed] [Google Scholar]
  53. Diosa-Toro M, Echavarría-Consuegra L, Flipse J, et al. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Neg Trop Dis 2017 ; 11 : e0005981. [CrossRef] [Google Scholar]
  54. Li Q, Lowey B, Sodroski C, et al. Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Comm 2017; 8. [Google Scholar]
  55. Song L, Liu H, Gao S, et al. Cellular MicroRNAs Inhibit replication of the H1N1 influenza a virus in infected cells. J Virol 2010 ; 84 : 8849–8860. [CrossRef] [PubMed] [Google Scholar]
  56. Slonchak A, Shannon RP, Pali G, et al. Human microRNA miR-532-5p exhibits antiviral activity against West Nile virus via suppression of host genes SESTD1 and TAB3 required for virus replication. J Virol 2016 ; 90 : 2388–2402. [Google Scholar]
  57. Smith JL, Grey FE, Uhrlaub JL, et al. Induction of the cellular microRNA, Hs_154, by West Nile virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors. J Virol 2012 ; 86 : 5278–5287. [CrossRef] [PubMed] [Google Scholar]
  58. Shim BS, Wu W, Kyriakis CS, et al. MicroRNA-555 has potent antiviral properties against poliovirus. J Gen Virol. 2016 ; 97 : 659–668. [CrossRef] [PubMed] [Google Scholar]
  59. Wang P, Hou J, Lin L, et al. Inducible microRNA-155 Feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol 2010 ; 185 : 6226–6233. [CrossRef] [PubMed] [Google Scholar]
  60. Tang WF, Huang RT, Chien KY, et al. Host microRNA miR-197 plays a negative regulatory role in the enterovirus 71 infectious cycle by targeting the RAN protein. J Virol 2016 ; 90 : 1424–1438. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.