Open Access
Med Sci (Paris)
Volume 35, Number 8-9, Août–Septembre 2019
Page(s) 635 - 642
Section M/S Revues
Published online 18 September 2019
  1. Heckmann BL, Boada-Romero E, Cunha LD, et al. LC3-associated phagocytosis and inflammation. J Mol Biol 2017 ; 429 : 3561–3576. [Google Scholar]
  2. Heckmann BL, Green DR. LC3-associated phagocytosis at a glance. J Cell Sci 2019 ; 132 : [Google Scholar]
  3. Martinez J, Malireddi RK, Lu Q, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 2015 ; 17 : 893–906. [CrossRef] [PubMed] [Google Scholar]
  4. Martinez J, Almendinger J, Oberst A, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 2011 ; 108 : 17396–17401. [CrossRef] [Google Scholar]
  5. Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007 ; 450 : 1253–1257. [CrossRef] [PubMed] [Google Scholar]
  6. Fazeli G, Wehman AM. Safely removing cell debris with LC3-associated phagocytosis. Biol cell 2017 ; 109 : 355–363. [CrossRef] [PubMed] [Google Scholar]
  7. Romao S, Munz C. LC3-associated phagocytosis. Autophagy 2014 ; 10 : 526–528. [CrossRef] [PubMed] [Google Scholar]
  8. Lerena MC, Colombo MI. Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol 2011 ; 13 : 814–835. [CrossRef] [PubMed] [Google Scholar]
  9. Nicola AM, Albuquerque P, Martinez LR, et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect Immun 2012 ; 80 : 3065–3076. [CrossRef] [PubMed] [Google Scholar]
  10. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015 ; 34 : 2441–2464. [PubMed] [Google Scholar]
  11. Vergne I, Lafont F, Espert L, et al. Autophagie, protéines ATG et maladies infectieuses. Med Sci (Paris) 2017 ; 33 : 312–318. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 2014 ; 12 : 101–114. [CrossRef] [PubMed] [Google Scholar]
  13. Masud S, Prajsnar TK, Torraca V, et al. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy 2019 ; 1–17. [Google Scholar]
  14. Yang CS, Lee JS, Rodgers M, et al. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 2012 ; 11 : 264–276. [CrossRef] [PubMed] [Google Scholar]
  15. Gluschko A, Herb M, Wiegmann K, et al. The beta2 integrin Mac-1 induces protective LC3-associated phagocytosis of Listeria monocytogenes. Cell Host Microbe 2018 ; 23 : 324–37 e5. [CrossRef] [PubMed] [Google Scholar]
  16. Abnave P, Mottola G, Gimenez G, et al. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014 ; 16 : 338–350. [CrossRef] [PubMed] [Google Scholar]
  17. Koster S, Upadhyay S, Chandra P, et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci USA 2017 ; 114 : E8711–E8E20. [CrossRef] [Google Scholar]
  18. Hubber A, Kubori T, Coban C, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017 ; 7 : 44795. [CrossRef] [PubMed] [Google Scholar]
  19. Choy A, Dancourt J, Mugo B, et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012 ; 338 : 1072–1076. [Google Scholar]
  20. Mitchell G, Cheng MI, Chen C, et al. Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci USA 2018 ; 115 : E210–E2E7. [CrossRef] [Google Scholar]
  21. Campbell-Valois FX, Sachse M, Sansonetti PJ, Parsot C. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio 2015; 6 : e02567–14. [CrossRef] [PubMed] [Google Scholar]
  22. Gong L, Cullinane M, Treerat P, et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One 2011 ; 6 : e17852. [CrossRef] [PubMed] [Google Scholar]
  23. Ligeon LA, Moreau K, Barois N, et al. Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles. Autophagy 2014 ; 10 : 1588–1602. [CrossRef] [PubMed] [Google Scholar]
  24. Akoumianaki T, Chamilos G. DAPK1 keeps the peace in antifungal inflammation. Cell Host Microbe 2016 ; 20 : 695–697. [CrossRef] [PubMed] [Google Scholar]
  25. Duan Z, Chen Q, Du L, et al. Phagocytosis of Candida albicans inhibits autophagic flux in macrophages. Oxid Med Cell Longev 2018 ; 2018 : 4938649. [PubMed] [Google Scholar]
  26. Andrianaki AM, Kyrmizi I, Thanopoulou K, et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun 2018 ; 9 : 3333. [CrossRef] [PubMed] [Google Scholar]
  27. Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-gamma-activated human cells. mBio 2015; 6 : e01157–15. [CrossRef] [PubMed] [Google Scholar]
  28. Boonhok R, Rachaphaew N, Duangmanee A, et al. LAP-like process as an immune mechanism downstream of IFN-gamma in control of the human malaria Plasmodium vivax liver stage. Proc Natl Acad Sci USA 2016 ; 113 : E3519–E3528. [CrossRef] [Google Scholar]
  29. Coppens I.. How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Curr Opin Microbiol 2017 ; 40 : 32–39. [CrossRef] [PubMed] [Google Scholar]
  30. Crauwels P, Bohn R, Thomas M, et al. Apoptotic-like Leishmania exploit the host’s autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy 2015 ; 11 : 285–297. [CrossRef] [PubMed] [Google Scholar]
  31. Matte C, Casgrain PA, Seguin O, et al. Leishmania major promastigotes evade LC3-associated phagocytosis through the action of GP63. PLoS Pathog 2016 ; 12 : e1005690. [CrossRef] [PubMed] [Google Scholar]
  32. Madjo U, Leymarie O, Fremont S, et al. LC3C contributes to Vpu-mediated antagonism of BST2/Tetherin restriction on HIV-1 release through a non-canonical autophagy pathway. Cell Rep 2016 ; 17 : 2221–2233. [CrossRef] [PubMed] [Google Scholar]
  33. Wan Y, Cao W, Han T, et al. Inducible Rubicon facilitates viral replication by antagonizing interferon production. Cell Mol Immunol 2017 ; 14 : 607–620. [CrossRef] [PubMed] [Google Scholar]
  34. Munz C.. Non-canonical functions of macroautophagy proteins during endocytosis by myeloid antigen presenting cells. Front Immunol 2018 ; 9 : 2765. [CrossRef] [PubMed] [Google Scholar]
  35. Henault J, Martinez J, Riggs JM, et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 2012 ; 37 : 986–997. [CrossRef] [PubMed] [Google Scholar]
  36. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ 2016 ; 23 : 915–926. [CrossRef] [PubMed] [Google Scholar]
  37. Muller S.. Autophagie, auto-immunité et maladies auto-immunes. Med Sci (Paris) 2017 ; 33 : 319–327. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Cunha LD, Yang M, Carter R, et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 2018 ; 175 : 429–41 e16. [Google Scholar]
  39. Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 2007 ; 131 : 966–979. [CrossRef] [PubMed] [Google Scholar]
  40. Florey O, Kim SE, Sandoval CP, et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 2011 ; 13 : 1335–1343. [CrossRef] [PubMed] [Google Scholar]
  41. Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol 2012 ; 22 : 374–380. [Google Scholar]
  42. Villarejo-Zori B, Boya P. Autophagie et vision. Med Sci (Paris) 2017 ; 33 : 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell 2013 ; 154 : 365–376. [CrossRef] [PubMed] [Google Scholar]
  44. Fazeli G, Trinkwalder M, Irmisch L, Wehman AM C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Sci 2016 ; 129 : 3721–3731. [Google Scholar]
  45. Fazeli G, Stetter M, Lisack JN, Wehman AM C. elegans blastomeres clear the corpse of the second polar body by LC3-associated phagocytosis. Cell Rep 2018 ; 23 : 2070–2082. [CrossRef] [PubMed] [Google Scholar]
  46. Mailleux AA, Overholtzer M, Brugge JS. L’entose, mort cellulaire par cannibalisme entre cellules tumorales. Med Sci (Paris) 2008 ; 24 : 246–248. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.