Open Access
Numéro
Med Sci (Paris)
Volume 35, Numéro 8-9, Août–Septembre 2019
Page(s) 635 - 642
Section M/S Revues
DOI https://doi.org/10.1051/medsci/2019129
Publié en ligne 18 septembre 2019
  1. Heckmann BL, Boada-Romero E, Cunha LD, et al. LC3-associated phagocytosis and inflammation. J Mol Biol 2017 ; 429 : 3561–3576. [Google Scholar]
  2. Heckmann BL, Green DR. LC3-associated phagocytosis at a glance. J Cell Sci 2019 ; 132 : [Google Scholar]
  3. Martinez J, Malireddi RK, Lu Q, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 2015 ; 17 : 893–906. [CrossRef] [PubMed] [Google Scholar]
  4. Martinez J, Almendinger J, Oberst A, et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci USA 2011 ; 108 : 17396–17401. [CrossRef] [Google Scholar]
  5. Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007 ; 450 : 1253–1257. [CrossRef] [PubMed] [Google Scholar]
  6. Fazeli G, Wehman AM. Safely removing cell debris with LC3-associated phagocytosis. Biol cell 2017 ; 109 : 355–363. [CrossRef] [PubMed] [Google Scholar]
  7. Romao S, Munz C. LC3-associated phagocytosis. Autophagy 2014 ; 10 : 526–528. [CrossRef] [PubMed] [Google Scholar]
  8. Lerena MC, Colombo MI. Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol 2011 ; 13 : 814–835. [CrossRef] [PubMed] [Google Scholar]
  9. Nicola AM, Albuquerque P, Martinez LR, et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect Immun 2012 ; 80 : 3065–3076. [CrossRef] [PubMed] [Google Scholar]
  10. Brooks CR, Yeung MY, Brooks YS, et al. KIM-1-/TIM-1-mediated phagocytosis links ATG5-/ULK1-dependent clearance of apoptotic cells to antigen presentation. EMBO J 2015 ; 34 : 2441–2464. [PubMed] [Google Scholar]
  11. Vergne I, Lafont F, Espert L, et al. Autophagie, protéines ATG et maladies infectieuses. Med Sci (Paris) 2017 ; 33 : 312–318. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  12. Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 2014 ; 12 : 101–114. [CrossRef] [PubMed] [Google Scholar]
  13. Masud S, Prajsnar TK, Torraca V, et al. Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model. Autophagy 2019 ; 1–17. [Google Scholar]
  14. Yang CS, Lee JS, Rodgers M, et al. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation. Cell Host Microbe 2012 ; 11 : 264–276. [CrossRef] [PubMed] [Google Scholar]
  15. Gluschko A, Herb M, Wiegmann K, et al. The beta2 integrin Mac-1 induces protective LC3-associated phagocytosis of Listeria monocytogenes. Cell Host Microbe 2018 ; 23 : 324–37 e5. [CrossRef] [PubMed] [Google Scholar]
  16. Abnave P, Mottola G, Gimenez G, et al. Screening in planarians identifies MORN2 as a key component in LC3-associated phagocytosis and resistance to bacterial infection. Cell Host Microbe 2014 ; 16 : 338–350. [CrossRef] [PubMed] [Google Scholar]
  17. Koster S, Upadhyay S, Chandra P, et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci USA 2017 ; 114 : E8711–E8E20. [CrossRef] [Google Scholar]
  18. Hubber A, Kubori T, Coban C, et al. Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Sci Rep 2017 ; 7 : 44795. [CrossRef] [PubMed] [Google Scholar]
  19. Choy A, Dancourt J, Mugo B, et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 2012 ; 338 : 1072–1076. [Google Scholar]
  20. Mitchell G, Cheng MI, Chen C, et al. Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci USA 2018 ; 115 : E210–E2E7. [CrossRef] [Google Scholar]
  21. Campbell-Valois FX, Sachse M, Sansonetti PJ, Parsot C. Escape of actively secreting Shigella flexneri from ATG8/LC3-positive vacuoles formed during cell-to-cell spread is facilitated by IcsB and VirA. mBio 2015; 6 : e02567–14. [CrossRef] [PubMed] [Google Scholar]
  22. Gong L, Cullinane M, Treerat P, et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS One 2011 ; 6 : e17852. [CrossRef] [PubMed] [Google Scholar]
  23. Ligeon LA, Moreau K, Barois N, et al. Role of VAMP3 and VAMP7 in the commitment of Yersinia pseudotuberculosis to LC3-associated pathways involving single- or double-membrane vacuoles. Autophagy 2014 ; 10 : 1588–1602. [CrossRef] [PubMed] [Google Scholar]
  24. Akoumianaki T, Chamilos G. DAPK1 keeps the peace in antifungal inflammation. Cell Host Microbe 2016 ; 20 : 695–697. [CrossRef] [PubMed] [Google Scholar]
  25. Duan Z, Chen Q, Du L, et al. Phagocytosis of Candida albicans inhibits autophagic flux in macrophages. Oxid Med Cell Longev 2018 ; 2018 : 4938649. [PubMed] [Google Scholar]
  26. Andrianaki AM, Kyrmizi I, Thanopoulou K, et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun 2018 ; 9 : 3333. [CrossRef] [PubMed] [Google Scholar]
  27. Selleck EM, Orchard RC, Lassen KG, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-gamma-activated human cells. mBio 2015; 6 : e01157–15. [CrossRef] [PubMed] [Google Scholar]
  28. Boonhok R, Rachaphaew N, Duangmanee A, et al. LAP-like process as an immune mechanism downstream of IFN-gamma in control of the human malaria Plasmodium vivax liver stage. Proc Natl Acad Sci USA 2016 ; 113 : E3519–E3528. [CrossRef] [Google Scholar]
  29. Coppens I.. How Toxoplasma and malaria parasites defy first, then exploit host autophagic and endocytic pathways for growth. Curr Opin Microbiol 2017 ; 40 : 32–39. [CrossRef] [PubMed] [Google Scholar]
  30. Crauwels P, Bohn R, Thomas M, et al. Apoptotic-like Leishmania exploit the host’s autophagy machinery to reduce T-cell-mediated parasite elimination. Autophagy 2015 ; 11 : 285–297. [CrossRef] [PubMed] [Google Scholar]
  31. Matte C, Casgrain PA, Seguin O, et al. Leishmania major promastigotes evade LC3-associated phagocytosis through the action of GP63. PLoS Pathog 2016 ; 12 : e1005690. [CrossRef] [PubMed] [Google Scholar]
  32. Madjo U, Leymarie O, Fremont S, et al. LC3C contributes to Vpu-mediated antagonism of BST2/Tetherin restriction on HIV-1 release through a non-canonical autophagy pathway. Cell Rep 2016 ; 17 : 2221–2233. [CrossRef] [PubMed] [Google Scholar]
  33. Wan Y, Cao W, Han T, et al. Inducible Rubicon facilitates viral replication by antagonizing interferon production. Cell Mol Immunol 2017 ; 14 : 607–620. [CrossRef] [PubMed] [Google Scholar]
  34. Munz C.. Non-canonical functions of macroautophagy proteins during endocytosis by myeloid antigen presenting cells. Front Immunol 2018 ; 9 : 2765. [CrossRef] [PubMed] [Google Scholar]
  35. Henault J, Martinez J, Riggs JM, et al. Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 2012 ; 37 : 986–997. [CrossRef] [PubMed] [Google Scholar]
  36. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ 2016 ; 23 : 915–926. [CrossRef] [PubMed] [Google Scholar]
  37. Muller S.. Autophagie, auto-immunité et maladies auto-immunes. Med Sci (Paris) 2017 ; 33 : 319–327. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  38. Cunha LD, Yang M, Carter R, et al. LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 2018 ; 175 : 429–41 e16. [Google Scholar]
  39. Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell 2007 ; 131 : 966–979. [CrossRef] [PubMed] [Google Scholar]
  40. Florey O, Kim SE, Sandoval CP, et al. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 2011 ; 13 : 1335–1343. [CrossRef] [PubMed] [Google Scholar]
  41. Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol 2012 ; 22 : 374–380. [Google Scholar]
  42. Villarejo-Zori B, Boya P. Autophagie et vision. Med Sci (Paris) 2017 ; 33 : 297–304. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  43. Kim JY, Zhao H, Martinez J, et al. Noncanonical autophagy promotes the visual cycle. Cell 2013 ; 154 : 365–376. [CrossRef] [PubMed] [Google Scholar]
  44. Fazeli G, Trinkwalder M, Irmisch L, Wehman AM C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Sci 2016 ; 129 : 3721–3731. [Google Scholar]
  45. Fazeli G, Stetter M, Lisack JN, Wehman AM C. elegans blastomeres clear the corpse of the second polar body by LC3-associated phagocytosis. Cell Rep 2018 ; 23 : 2070–2082. [CrossRef] [PubMed] [Google Scholar]
  46. Mailleux AA, Overholtzer M, Brugge JS. L’entose, mort cellulaire par cannibalisme entre cellules tumorales. Med Sci (Paris) 2008 ; 24 : 246–248. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.