Free Access
Med Sci (Paris)
Volume 35, Mars 2019
JRC 2018 – Innovation et parcours de soins
Page(s) 8 - 12
Section Journée de Recherche Clinique 2018
Published online 03 April 2019
  1. Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis 2011 ; 34 : 159–164. [CrossRef] [PubMed] [Google Scholar]
  2. Liewluck T, Selcen D, Engel A. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and dok-7 myasthenia. Muscle Nerve 2011 ; 44 : 789–794. [CrossRef] [PubMed] [Google Scholar]
  3. Gallenmüller C, Müller-Felber W, Dusl M, et al. Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 2014 ; 24 : 31–35. [CrossRef] [PubMed] [Google Scholar]
  4. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009 ; 326 : 818–823. [Google Scholar]
  5. Tardieu M, Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol 2017 ; 16 : 712–720. [CrossRef] [PubMed] [Google Scholar]
  6. Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996 ; 13 : 175–182. [Google Scholar]
  7. Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014; 6 : 220ra10. [CrossRef] [PubMed] [Google Scholar]
  8. Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018 ; 20 : e3015. [CrossRef] [PubMed] [Google Scholar]
  9. Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018 ; 362 : 86–91. [Google Scholar]
  10. Zhu P, Wu F, Mosenson J, et al. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids 2017 ; 7 : 31–41. [CrossRef] [PubMed] [Google Scholar]
  11. Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016 ; 18 : 533–540. [Google Scholar]
  12. Wagner KR, Fleckenstein JL, Amato AA, et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008 ; 63 : 561–571. [CrossRef] [PubMed] [Google Scholar]
  13. Callon M, Rabeharisoa V. Le pouvoir des malades. Paris: Éditions Presses des Mines, 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.