Accès gratuit
Numéro
Med Sci (Paris)
Volume 35, Mars 2019
JRC 2018 – Innovation et parcours de soins
Page(s) 8 - 12
Section Journée de Recherche Clinique 2018
DOI https://doi.org/10.1051/medsci/2019028
Publié en ligne 3 avril 2019
  1. Bosch AM, Abeling NG, Ijlst L, et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment. J Inherit Metab Dis 2011 ; 34 : 159–164. [CrossRef] [PubMed] [Google Scholar]
  2. Liewluck T, Selcen D, Engel A. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and dok-7 myasthenia. Muscle Nerve 2011 ; 44 : 789–794. [CrossRef] [PubMed] [Google Scholar]
  3. Gallenmüller C, Müller-Felber W, Dusl M, et al. Salbutamol-responsive limb-girdle congenital myasthenic syndrome due to a novel missense mutation and heteroallelic deletion in MUSK. Neuromuscul Disord 2014 ; 24 : 31–35. [CrossRef] [PubMed] [Google Scholar]
  4. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009 ; 326 : 818–823. [Google Scholar]
  5. Tardieu M, Zérah M, Gougeon ML, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol 2017 ; 16 : 712–720. [CrossRef] [PubMed] [Google Scholar]
  6. Laporte J, Hu LJ, Kretz C, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996 ; 13 : 175–182. [Google Scholar]
  7. Childers MK, Joubert R, Poulard K, et al. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 2014; 6 : 220ra10. [CrossRef] [PubMed] [Google Scholar]
  8. Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018 ; 20 : e3015. [CrossRef] [PubMed] [Google Scholar]
  9. Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science 2018 ; 362 : 86–91. [Google Scholar]
  10. Zhu P, Wu F, Mosenson J, et al. CRISPR/Cas9-mediated genome editing corrects dystrophin mutation in skeletal muscle stem cells in a mouse model of muscle dystrophy. Mol Ther Nucleic Acids 2017 ; 7 : 31–41. [CrossRef] [PubMed] [Google Scholar]
  11. Young CS, Hicks MR, Ermolova NV, et al. A single CRISPR-Cas9 deletion strategy that targets the majority of DMD patients restores dystrophin function in hiPSC-derived muscle cells. Cell Stem Cell 2016 ; 18 : 533–540. [Google Scholar]
  12. Wagner KR, Fleckenstein JL, Amato AA, et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008 ; 63 : 561–571. [CrossRef] [PubMed] [Google Scholar]
  13. Callon M, Rabeharisoa V. Le pouvoir des malades. Paris: Éditions Presses des Mines, 1999. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.